首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Given a set X, $\mathsf {AC}^{\mathrm{fin}(X)}$ denotes the statement: “$[X]^{<\omega }\backslash \lbrace \varnothing \rbrace$ has a choice set” and $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )$ denotes the family of all closed subsets of the topological space $\mathbf {2}^{X}$ whose definition depends on a finite subset of X. We study the interrelations between the statements $\mathsf {AC}^{\mathrm{fin}(X)},$ $\mathsf {AC}^{\mathrm{fin}([X]^{<\omega })},$ $\mathsf {AC}^{\mathrm{fin} (F_{n}(X,2))},$ $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$ and “$\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set”. We show:
  • (i) $\mathsf {AC}^{\mathrm{fin}(X)}$ iff $\mathsf {AC}^{\mathrm{fin}([X]^{<\omega } )}$ iff $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set iff $\mathsf {AC}^{\mathrm{fin}(F_{n}(X,2))}$.
  • (ii) $\mathsf {AC}_{\mathrm{fin}}$ ($\mathsf {AC}$ restricted to families of finite sets) iff for every set X, $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set.
  • (iii) $\mathsf {AC}_{\mathrm{fin}}$ does not imply “$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set($\mathcal {K}(\mathbf {X})$ is the family of all closed subsets of the space $\mathbf {X}$)
  • (iv) $\mathcal {K}(\mathbf {2}^{X})\backslash \lbrace \varnothing \rbrace$ implies $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$ but $\mathsf {AC}^{\mathrm{fin}(X)}$ does not imply $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$.
We also show that “For every setX, “$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set” iff “for every setX, $\mathcal {K}\big (\mathbf {[0,1]}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set” iff “for every product$\mathbf {X}$of finite discrete spaces,$\mathcal {K}(\mathbf {X})\backslash \lbrace \varnothing \rbrace$ has a choice set”.  相似文献   

2.
Hay and, then, Johnson extended the classic Rice and Rice‐Shapiro Theorems for computably enumerable sets, to analogs for all the higher levels in the finite Ershov Hierarchy. The present paper extends their work (with some motivations presented) to analogs in the transfinite Ershov Hierarchy. Some of the transfinite cases are done for all transfinite notations in Kleene's important system of notations, $\mathcal {O}$. Other cases are done for all transfinite notations in a very natural, proper subsystem $\mathcal {O}_{\mathrm{Cantor}}$ of $\mathcal {O}$, where $\mathcal {O}_{\mathrm{Cantor}}$ has at least one notation for each constructive ordinal. In these latter cases it is open as to what happens for the entire set of transfinite notations in $(\mathcal {O} -\mathcal {O}_{\mathrm{Cantor}})$.  相似文献   

3.
To each irreducible infinite dimensional representation $(\pi ,\mathcal {H})$ of a C*‐algebra $\mathcal {A}$, we associate a collection of irreducible norm‐continuous unitary representations $\pi _{\lambda }^\mathcal {A}$ of its unitary group ${\rm U}(\mathcal {A})$, whose equivalence classes are parameterized by highest weights in the same way as the irreducible bounded unitary representations of the group ${\rm U}_\infty (\mathcal {H}) = {\rm U}(\mathcal {H}) \cap (\mathbf {1} + K(\mathcal {H}))$ are. These are precisely the representations arising in the decomposition of the tensor products $\mathcal {H}^{\otimes n} \otimes (\mathcal {H}^*)^{\otimes m}$ under ${\rm U}(\mathcal {A})$. We show that these representations can be realized by sections of holomorphic line bundles over homogeneous Kähler manifolds on which ${\rm U}(\mathcal {A})$ acts transitively and that the corresponding norm‐closed momentum sets $I_{\pi _\lambda ^\mathcal {A}}^{\bf n} \subseteq {\mathfrak u}(\mathcal {A})^{\prime }$ distinguish inequivalent representations of this type.  相似文献   

4.
We consider analytic self‐maps φ on $\mathbf {D}$ and prove that the composition operator Cφ acting on $H_{v}^0$ is hypercyclic if φ is an automorphism or a hyperbolic non‐automorphic symbol with no fixed point. We give examples of weights v and parabolic non‐automorphisms φ on $\mathbf {D}$ which yield non‐hypercyclic composition operators Cφ on $H_{v}^0$.  相似文献   

5.
设F是平面区域D上的亚纯函数族,a,b是两个有穷非零复数.如果■ff∈F,f(z)=a■f~((k))(z)=a,ff~((k))(z)=b■f~((k+1))(z)=b,且f-a的零点重数至少为k(k≥3),那么函数族F在D内正规;当k=2时,在条件a≠4b的情况下,同样有函数族F在D内正规.  相似文献   

6.
Given a family of vectors in a Hilbert space we characterize the existence of a family of commuting contractions on having regular dilation and such that


The theorem is a multi-dimensional analogue for some well-known operator moment problems due to Sebestyén in case or, recently, to Gavruta and Paunescu in case .

  相似文献   


7.
We prove that if , are nonzero sheaves of ideals on a complex smooth variety , then for every we have the following relation between the multiplier ideals of , and :


A similar formula holds for the asymptotic multiplier ideals of the sum of two graded systems of ideals.

We use this result to approximate at a given point arbitrary multiplier ideals by multiplier ideals associated to zero dimensional ideals. This is applied to compare the multiplier ideals associated to a scheme in different embeddings.

  相似文献   


8.
In this paper the category, C\mathcal{C} with respect to a certain class D\mathcal{D} of subobjects of C\mathcal{C} is formed and the universality of monomorphisms of ${\overset{\lower0.5em\hbox{${\overset{\lower0.5em\hbox{ is investigated. The main result characterizes ${\overset{\lower0.5em\hbox{${\overset{\lower0.5em\hbox{-universality of monos, in terms of C\mathcal{C}-universality of monos and the existence of local C\mathcal{C}-implications.  相似文献   

9.
We generalize a result of Kostant and Wallach concerning the algebraic integrability of the Gelfand-Zeitlin vector fields to the full set of strongly regular elements in \mathfrakg\mathfrakl \mathfrak{g}\mathfrak{l} (n, ℂ). We use decomposition classes to stratify the strongly regular set by subvarieties XD {X_\mathcal{D}} . We construct an étale cover [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} of XD {X_\mathcal{D}} and show that XD {X_\mathcal{D}} and [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} are smooth and irreducible. We then use Poisson geometry to lift the Gelfand-Zeitlin vector fields on XD {X_\mathcal{D}} to Hamiltonian vector fields on [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} and integrate these vector fields to an action of a connected, commutative algebraic group.  相似文献   

10.
If a monoid S is given by some finite complete presentation ℘, we construct inductively a chain of CW-complexes
such that Δ n has dimension n, for every 2≤mn, the m-skeleton of Δ n is Δ m , and p m are critical (m+1)-cells with 1≤mn−2. For every 2≤mn−1, the following is an exact sequence of (ℤS,ℤS)-bimodules
where if m=2. We then use these sequences to obtain a free finitely generated bimodule partial resolution of ℤS. Also we show that for groups properties FDT and FHT coincide.  相似文献   

11.
We study the degree structure of bQ‐reducibility and we prove that for any noncomputable c.e. incomplete bQ‐degree a, there exists a nonspeedable bQ‐degree incomparable with it. The structure $\mathcal {D}_{\mbox{bs}}$ of the $\mbox{bs}$‐degrees is not elementary equivalent neither to the structure of the $\mbox{be}$‐degrees nor to the structure of the $\mbox{e}$‐degrees. If c.e. degrees a and b form a minimal pair in the c.e. bQ‐degrees, then a and b form a minimal pair in the bQ‐degrees. Also, for every simple set S there is a noncomputable nonspeedable set A which is bQ‐incomparable with S and bQ‐degrees of S and A does not form a minimal pair.  相似文献   

12.
The classical Wiener lemma and its various generalizations are important and have numerous applications in numerical analysis, wavelet theory, frame theory, and sampling theory. There are many different equivalent formulations for the classical Wiener lemma, with an equivalent formulation suitable for our generalization involving commutative algebra of infinite matrices . In the study of spline approximation, (diffusion) wavelets and affine frames, Gabor frames on non-uniform grid, and non-uniform sampling and reconstruction, the associated algebras of infinite matrices are extremely non-commutative, but we expect those non-commutative algebras to have a similar property to Wiener's lemma for the commutative algebra . In this paper, we consider two non-commutative algebras of infinite matrices, the Schur class and the Sjöstrand class, and establish Wiener's lemmas for those matrix algebras.

  相似文献   


13.
Let be a finite set of tiles, and a set of regions tileable by . We introduce a tile counting group as a group of all linear relations for the number of times each tile can occur in a tiling of a region . We compute the tile counting group for a large set of ribbon tiles, also known as rim hooks, in a context of representation theory of the symmetric group.

The tile counting group is presented by its set of generators, which consists of certain new tile invariants. In a special case these invariants generalize the Conway-Lagarias invariant for tromino tilings and a height invariant which is related to computation of characters of the symmetric group.

The heart of the proof is the known bijection between rim hook tableaux and certain standard skew Young tableaux. We also discuss signed tilings by the ribbon tiles and apply our results to the tileability problem.

  相似文献   


14.
We prove the following result concerning the degree spectrum of the atom relation on a computable Boolean algebra. Let be a computable Boolean algebra with infinitely many atoms and be the Turing degree of the atom relation of . If is a c.e. degree such that , then there is a computable copy of where the atom relation has degree . In particular, for every c.e. degree , any computable Boolean algebra with infinitely many atoms has a computable copy where the atom relation has degree .

  相似文献   


15.
Let be one of the root systems , , and and write for the set of positive roots of together with the origin of . Let denote the Laurent polynomial ring over a field and write for the affine semigroup ring which is generated by those monomials with , where if . Let denote the polynomial ring over and write for the toric ideal of . Thus is the kernel of the surjective homomorphism defined by setting for all . In their combinatorial study of hypergeometric functions associated with root systems, Gelfand, Graev and Postnikov discovered a quadratic initial ideal of the toric ideal of . The purpose of the present paper is to show the existence of a reverse lexicographic (squarefree) quadratic initial ideal of the toric ideal of each of , and . It then follows that the convex polytope of the convex hull of each of , and possesses a regular unimodular triangulation arising from a flag complex, and that each of the affine semigroup rings , and is Koszul.  相似文献   

16.
For a set G and a family of sets ${\mathcal{F}}$ let ${\mathcal{D}_{\mathcal{F}}(G)=\{F\in \mathcal{F}:F\cap G=\emptyset\}}$ and ${\mathcal{S}_{\mathcal{F}}(G)=\{F\in\mathcal{F}:F\subseteq G\,{\rm or} \,G \subseteq F\}.}$ We say that a family is l-almost intersecting, (≤ l)-almost intersecting, l-almost Sperner, (≤ l)-almost Sperner if ${|\mathcal{D}_{\mathcal{F}}(F)|=l, |\mathcal{D}_{\mathcal{F}}(F)|\le l, |\mathcal{S}_{\mathcal{F}}(F)|=l, |\mathcal{S}_{\mathcal{F}}(F)| \le l}$ (respectively) for all ${F \in \mathcal{F}.}$ We consider the problem of finding the largest possible family for each of the above properties. We also address the analogous generalization of cross-intersecting and cross-Sperner families.  相似文献   

17.
This paper describes a new and user‐friendly method for constructing models of non‐well‐founded set theory. Given a sufficiently well‐behaved system θ of non‐well‐founded set‐theoretic equations, we describe how to construct a model Mθ for $\mathsf {ZFC}^-$ in which θ has a non‐degenerate solution. We shall prove that this Mθ is the smallest model for $\mathsf {ZFC}^-$ which contains $\mathbf {V}$ and has a non‐degenerate solution of θ.  相似文献   

18.
若对x∈H,‖Tx‖~2≤‖T~2x‖‖x‖,则称T是仿正规算子.d_(AB)表示δ_(AB)或△_(AB),其中δ_(AB)和△_(AB)分别表示Banach空间B(H)上的广义导算子和初等算子,其定义为δ_(AB)X=AX-XB,△_(AB)X=AXB-X,X∈B(H).若A和B~*是仿正规算子,则可证d_(AB)是polaroid算子,f∈H(σ(d_(AB))),f(d_(AB))满足广义Weyl定理,f(d_(AB)~*)满足广义a-Weyl定理,其中H(σ(d_(AB)))表示在σ(d_(AB))的某邻域上解析的函数全体.  相似文献   

19.
Summary. Let $\widehat{\widehat T}_n$ and $\overline U_n$ denote the modified Chebyshev polynomials defined by $\widehat{\widehat T}_n (x) = {T_{2n + 1} \left(\sqrt{x + 3 \over 4} \right) \over \sqrt{x + 3 \over 4}}, \quad \overline U_{n}(x) = U_{n} \left({x + 1 \over 2}\right) \qquad (n \in \mathbb{N}_{0},\ x \in \mathbb{R}).$ For all $n \in \mathbb{N}_{0}$ define $\widehat{\widehat T}_{-(n + 1)} = \widehat{\widehat T}_n$ and $\overline U_{-(n + 2)} = - \overline U_n$, furthermore $\overline U_{-1} = 0$. In this paper, summation formulae for sums of type $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k}(\nu; x)$ are given, where $\bigl(\mathbf a_{\mathbf k}(\nu; x)\bigr)^{-1} = (-1)^k \cdot \Bigl( x \cdot \widehat{\widehat T}_{\left[k + 1 \over 2\right] - 1} (\nu) +\widehat{\widehat T}_{\left[k + 1 \over 2\right]}(\nu)\Bigr) \cdot \Bigl(x \cdot \overline U_{\left[k \over 2\right] - 1} (\nu) + \overline U_{\left[k \over 2\right]} (\nu)\Bigr)$ with real constants $ x, \nu $. The above sums will turn out to be telescope sums. They appear in connection with projective geometry. The directed euclidean measures of the line segments of a projective scale form a sequence of type $(\mathbf a_{\mathbf k} (\nu;x))_{k \in \mathbb{Z}}$ where $ \nu $ is the cross-ratio of the scale, and x is the ratio of two consecutive line segments once chosen. In case of hyperbolic $(\nu \in \mathbb{R} \setminus] - 3,1[)$ and parabolic $\nu = -3$ scales, the formula $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k} (\nu; x) = {\frac{1}{x - q_{{+}\atop(-)}}} - {\frac{1}{x - q_{{-}\atop(+)}}} \eqno (1)$ holds for $\nu > 1$ (resp. $\nu \leq - 3$), unless the scale is geometric, that is unless $x = q_+$ or $x = q_-$. By $q_{\pm} = {-(\nu + 1) \pm \sqrt{(\nu - 1)(\nu + 3)} \over 2}$ we denote the quotient of the associated geometric sequence.
  相似文献   

20.
Let H1, H2 and H3 be infinite dimensional separable complex Hilbert spaces. We denote by M(D,V,F) a 3×3 upper triangular operator matrix acting on Hi +H2+ H3 of theform M(D,E,F)=(A D F 0 B F 0 0 C).For given A ∈ B(H1), B ∈ B(H2) and C ∈ B(H3), the sets ∪D,E,F^σp(M(D,E,F)),∪D,E,F ^σr(M(D,E,F)),∪D,E,F ^σc(M(D,E,F)) and ∪D,E,F σ(M(D,E,F)) are characterized, where D ∈ B(H2,H1), E ∈B(H3, H1), F ∈ B(H3,H2) and σ(·), σp(·), σr(·), σc(·) denote the spectrum, the point spectrum, the residual spectrum and the continuous spectrum, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号