首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let $G_M$ be either the orthogonal group $O_M$ or the symplectic group $Sp_M$ over the complex field; in the latter case the non-negative integer $M$ has to be even. Classically, the irreducible polynomial representations of the group $G_M$ are labeled by partitions $\mu=(\mu_{1},\mu_{2},\,\ldots)$ such that $\mu^{\prime}_1+\mu^{\prime}_2\le M$ in the case $G_M=O_M$, or $2\mu^{\prime}_1\le M$ in the case $G_M=Sp_M$. Here $\mu^{\prime}=(\mu^{\prime}_{1},\mu^{\prime}_{2},\,\ldots)$ is the partition conjugate to $\mu$. Let $W_\mu$ be the irreducible polynomial representation of the group $G_M$ corresponding to $\mu$. Regard $G_N\times G_M$ as a subgroup of $G_{N+M}$. Then take any irreducible polynomial representation $W_\lambda$ of the group $G_{N+M}$. The vector space $W_{\lambda}(\mu)={\rm Hom}_{\,G_M}( W_\mu, W_\lambda)$ comes with a natural action of the group $G_N$. Put $n=\lambda_1-\mu_1+\lambda_2-\mu_2+\ldots\,$. In this article, for any standard Young tableau $\varOmega$ of skew shape $\lm$ we give a realization of $W_{\lambda}(\mu)$ as a subspace in the $n$-fold tensor product $(\mathbb{C}^N)^{\bigotimes n}$, compatible with the action of the group $G_N$. This subspace is determined as the image of a certain linear operator $F_\varOmega (M)$ on $(\mathbb{C}^N)^{\bigotimes n}$, given by an explicit formula. When $M=0$ and $W_{\lambda}(\mu)=W_\lambda$ is an irreducible representation of the group $G_N$, we recover the classical realization of $W_\lambda$ as a subspace in the space of all traceless tensors in $(\mathbb{C}^N)^{\bigotimes n}$. Then the operator $F_\varOmega\(0)$ may be regarded as the analogue for $G_N$ of the Young symmetrizer, corresponding to the standard tableau $\varOmega$ of shape $\lambda$. This symmetrizer is a certain linear operator on $\CNn$$(\mathbb{C}^N)^{\bigotimes n} $ with the image equivalent to the irreducible polynomial representation of the complex general linear group $GL_N$, corresponding to the partition $\lambda$. Even in the case $M=0$, our formula for the operator $F_\varOmega(M)$ is new. Our results are applications of the representation theory of the twisted Yangian, corresponding to the subgroup $G_N$ of $GL_N$. This twisted Yangian is a certain one-sided coideal subalgebra of the Yangian corresponding to $GL_N$. In particular, $F_\varOmega(M)$ is an intertwining operator between certain representations of the twisted Yangian in $(\mathbb{C}^N)^{\bigotimes n}$.  相似文献   

2.
Let Bs(H) be the real linear space of all self-adjoint operators on a complex Hilbert space H with dim H ≥ 2.It is proved that a linear surjective map on Bs (H) preserves the nonzero projections of Jordan products of two operators if and only if there is a unitary or an anti-unitary operator U on H such that (X)=λU XU,X∈Bs(H) for some constant λ with λ∈{1,1}.  相似文献   

3.
Let $\mathcal{B}(\mathcal{H})$ be the $C^∗$-algebra of all bounded linear operators on a complex Hilbert space $\mathcal{H}$. It is proved that an additive surjective map $φ$ on $\mathcal{B}(\mathcal{H})$ preserving the star partial order in both directions if and only if one of the following assertions holds. (1) There exist a nonzero complex number $α$ and two unitary operators $\boldsymbol{U}$and$\boldsymbol{V}$ on $\mathcal{H}$ such that $φ(\boldsymbol{X}) = α\boldsymbol{UXV}$or $φ(\boldsymbol{X}) = α\boldsymbol{UX}^∗\boldsymbol{V}$ for all $X ∈ \mathcal{B}(\mathcal{H})$. (2) There exist a nonzero $α$ and two anti-unitary operators$\boldsymbol{U}$and$\boldsymbol{V}$on $\mathcal{H}$ such that $φ(\boldsymbol{X}) = α\boldsymbol{UXV}$ or $φ(\boldsymbol{X}) = α\boldsymbol{UX}^∗\boldsymbol{V}$ for all $X ∈ \mathcal{B}(\mathcal{H})$.  相似文献   

4.
本文研究了单位圆盘上从$L^{\infty}(\mathbb{D})$空间到Bloch型空间 $\mathcal{B}_\alpha$ 一类奇异积分算子$Q_\alpha, \alpha>0$的范数, 该算子可以看成投影算子$P$ 的推广,定义如下$$Q_\alpha f(z)=\alpha \int_{\mathbb{D}}\frac{f(w)}{(1-z\bar{w})^{\alpha+1}}\d A(w),$$ 同时我们也得到了该算子从 $C(\overline{\mathbb{D}})$空间到小Bloch型空间$\mathcal{B}_{\alpha,0}$上的范数.  相似文献   

5.
Let $\Omega\subset \mathbb{R}^4$ be a smooth bounded domain, $W_0^{2,2}(\Omega)$ be the usual Sobolev space. For any positive integer $\ell$, $\lambda_{\ell}(\Omega)$ is the $\ell$-th eigenvalue of the bi-Laplacian operator. Define $E_{\ell}=E_{\lambda_1(\Omega)}\oplus E_{\lambda_2(\Omega)}\oplus\cdots\oplus E_{\lambda_{\ell}(\Omega)}$, where $E_{\lambda_i(\Omega)}$ is eigenfunction space associated with $\lambda_i(\Omega)$. $E^{\bot}_{\ell}$ denotes the orthogonal complement of $E_\ell$ in $W_0^{2,2}(\Omega)$. For $0\leq\alpha<\lambda_{\ell+1}(\Omega)$, we define a norm by $\|u\|_{2,\alpha}^{2}=\|\Delta u\|^2_2-\alpha \|u\|^2_2$ for $u\in E^\bot_{\ell}$. In this paper, using the blow-up analysis, we prove the following Adams inequalities$$\sup_{u\in E_{\ell}^{\bot},\,\| u\|_{2,\alpha}\leq 1}\int_{\Omega}e^{32\pi^2u^2}{\rm d}x<+\infty;$$moreover, the above supremum can be attained by a function $u_0\in E_{\ell}^{\bot}\cap C^4(\overline{\Omega})$ with $\|u_0\|_{2,\alpha}=1$. This result extends that of Yang (J. Differential Equations, 2015), and complements that of Lu and Yang (Adv. Math. 2009) and Nguyen (arXiv: 1701.08249, 2017).  相似文献   

6.
Given a set X, $\mathsf {AC}^{\mathrm{fin}(X)}$ denotes the statement: “$[X]^{<\omega }\backslash \lbrace \varnothing \rbrace$ has a choice set” and $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )$ denotes the family of all closed subsets of the topological space $\mathbf {2}^{X}$ whose definition depends on a finite subset of X. We study the interrelations between the statements $\mathsf {AC}^{\mathrm{fin}(X)},$ $\mathsf {AC}^{\mathrm{fin}([X]^{<\omega })},$ $\mathsf {AC}^{\mathrm{fin} (F_{n}(X,2))},$ $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$ and “$\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set”. We show:
  • (i) $\mathsf {AC}^{\mathrm{fin}(X)}$ iff $\mathsf {AC}^{\mathrm{fin}([X]^{<\omega } )}$ iff $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set iff $\mathsf {AC}^{\mathrm{fin}(F_{n}(X,2))}$.
  • (ii) $\mathsf {AC}_{\mathrm{fin}}$ ($\mathsf {AC}$ restricted to families of finite sets) iff for every set X, $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set.
  • (iii) $\mathsf {AC}_{\mathrm{fin}}$ does not imply “$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set($\mathcal {K}(\mathbf {X})$ is the family of all closed subsets of the space $\mathbf {X}$)
  • (iv) $\mathcal {K}(\mathbf {2}^{X})\backslash \lbrace \varnothing \rbrace$ implies $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$ but $\mathsf {AC}^{\mathrm{fin}(X)}$ does not imply $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$.
We also show that “For every setX, “$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set” iff “for every setX, $\mathcal {K}\big (\mathbf {[0,1]}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set” iff “for every product$\mathbf {X}$of finite discrete spaces,$\mathcal {K}(\mathbf {X})\backslash \lbrace \varnothing \rbrace$ has a choice set”.  相似文献   

7.
For a finite discrete topological space $X$ with at least two elements, a nonempty set $\Gamma$, and a map $\varphi:\Gamma \to \Gamma$, $\sigma_{\varphi}:X^{\Gamma} \to X^{\Gamma}$with $\sigma_{\varphi}((x_{\alpha})_{\alpha \in \Gamma})=(x_{\varphi(\alpha)})_{\alpha \in \Gamma}$ (for $(x_{\alpha})_{\alpha \in \Gamma} \in X^{\Gamma}$) is a generalized shift. In this text for $\mathcal{S} = \{\sigma_{\varphi}:\varphi \in \Gamma^{\Gamma}\}$ and $\mathcal{H}=\{\sigma_{\varphi}:\Gamma \xrightarrow{\varphi} \Gamma$ is bijective$\}$ we study proximal relations of transformation semigroups $(\mathcal{S}, X^{\Gamma})$ and $(\mathcal{H}, X^{\Gamma})$. Regarding proximal relation we prove: $$P(\mathcal{S}, X^{\Gamma}) = \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \exists \beta \in \Gamma (x_{\beta} = y_{\beta})\}$$and $P(\mathcal{H}, X^{\Gamma} ) \subseteq \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\beta \in \Gamma : x_{\beta} = y_{\beta}\}$ is infinite$\}$ $\cup\{($ $x,x) : x \in \mathcal{X}\}$. Moreover, for infinite $\Gamma$, both transformation semigroups $(\mathcal{S}, X^{\Gamma})$ and $(\mathcal{H}, X^{\Gamma})$ are regionally proximal, i.e., $Q(\mathcal{S}, X^{\Gamma}) = Q(\mathcal{H}, X^{\Gamma} ) = X^{\Gamma} \times X^{\Gamma}$, also for sydetically proximal relation we have $L(\mathcal{H}, X^{\Gamma}) = \{((x_{\alpha})_{\alpha \in \Gamma},(y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\gamma ∈ \Gamma :$ $x_{\gamma} \neq y_{\gamma}\}$ is finite$\}$.  相似文献   

8.
Let \(X=G/P\) be a real projective quadric, where \(G=O(p,\,q)\) and P is a parabolic subgroup of G. Let \((\pi _{\lambda ,\epsilon },\, \mathcal H_{\lambda ,\epsilon })_{ (\lambda ,\epsilon )\in {\mathbb {C}}\times \{\pm \}}\) be the family of (smooth) representations of G induced from the characters of P. For \((\lambda ,\, \epsilon ),\, (\mu ,\, \eta )\in {\mathbb {C}}\times \{\pm \},\) a differential operator \(\mathbf D_{(\mu ,\eta )}^\mathrm{reg}\) on \(X\times X,\) acting G-covariantly from \({\mathcal {H}}_{\lambda ,\epsilon } \otimes {\mathcal {H}}_{\mu , \eta }\) into \({\mathcal {H}}_{\lambda +1,-\epsilon } \otimes {\mathcal {H}}_{\mu +1, -\eta }\) is constructed.  相似文献   

9.
Let K be a totally real number field, π an irreducible cuspidal representation of ${{\rm GL}_{2}(K){\backslash}{\rm GL}_{2}(\mathbb{A}K)}$ with unitary central character, and χ a Hecke character of conductor ${\mathfrak{q}}$ . Then ${L(1/2, \pi\oplus\chi) \ll (\mathcal{N}\mathfrak{q})^{\frac{1}{2}-\frac{1}{8}(1-2\theta)+\epsilon}}$ , where 0 ≤ θ ≤ 1/2 is any exponent towards the Ramanujan–Petersson conjecture (θ =  1/9 is admissible). The proof is based on a spectral decomposition of shifted convolution sums and a generalized Kuznetsov formula.  相似文献   

10.
For ordinals α beginning a Σ1 gap in $\mathrm{L}(\mathbb {R})$, where $\Sigma _{1}^{\mathrm{J}_{\alpha }(\mathbb {R})}$ is closed under number quantification, we give an inner model‐theoretic proof that every thin $\Sigma _{1}^{\mathrm{J}_{\alpha }(\mathbb {R})}$ equivalence relation is $\Delta _{1}^{\mathrm{J}_{\alpha }(\mathbb {R})}$ in a real parameter from the (optimal) hypothesis $\mathsf {AD}^{\mathrm{J}_{\alpha }(\mathbb {R})}$.  相似文献   

11.
在这篇文章中,我们通过Hardy算子交换子$\mathrm{H}_b$与它的对偶算子交换子$\mathrm{H}^*_b$, 其中$b\in {\mathrm{CMOL}^{p_2, \lambda}_{\rm rad}L^{p_1}_{\rm ang}(\mathbb R^n)}$,建立了混合径角$\lambda$中心有界平均振荡空间的一个特征.  相似文献   

12.
A generalized derivation , is defined by the formula , where and is the Banach algebra of bounded linear operators in a Hilbert space . Sufficient conditions under which and are given. Bibliography: 8 titles. Translated fromProblemy Matematicheskogo Analiza, No. 20, 2000, pp. 111–119.  相似文献   

13.
Let π : M~n→P~n be an n-dimensional small cover over P~n and λ : F(P~n)→Z_2~n be its characteristic function. The author uses the symbol c(λ) to denote the cardinal number of the image Im(λ). If c(λ) = n + 1 or n + 2, then a necessary and sufficient condition on the existence of spin structure on Mnis given. As a byproduct, under some special conditions, the author uses the second Stiefel-Whitney class to detect when P~n is n-colorable or(n + 1)-colorable.  相似文献   

14.
In this paper,we obtain that b∈ BMO(R~n) if and only if the commutator[b,I_α]is bounded from the Morrey spaces L~(p_1,λ_1)(R~n)×L~(p_2,λ_2)(R~n) to L~(q,λ)(R~n),for some appropriate indices p,q,λ,μ.Also we show that b ∈ Lip_β(R~n) if and only if the commutator[b,I_α]is bounded from the Morrey spaces L~(p_1,λ_1)(R~n)×L~(p_2,λ_2)(R~n) to L~(q,λ)(R~n),for some appropriate indices p,q,λ,μ.  相似文献   

15.
研究了欧氏空间R~2中单位方体Q~2=[0,1]~2上沿曲面(t,s,γ(t,s))的振荡奇异积分算子T_(α,β)f(u,v,x)=∫_(Q~2)f(u-t,v-s,x-γ(t,s))e~(it~(-β_1)s~(-β_2))t~(-1-α_1)s~(-1-α_2)dtds从Sobolev空间L_τ~p(R~(2+n))到L~p(R~(2+n))中的有界性,其中x∈R~n,(u,v)∈R~2,(t,s,γ(t,s))=(t,s,t~(P_1)s~(q_1),t~(p_2)s~(q_2),…,t~(p_n)s~(q_n))为R~(2+n)上一个曲面,且β_1α_1≥0,β_2α_20.这些结果推广和改进了R~3上的某些已知的结果.作为应用,得到了乘积空间上粗糖核奇异积分算子的Sobolev有界性.  相似文献   

16.
考虑了R~n上n(n≥2)维向列型液晶流(u,d)当初值属于Q_α~(-1)(R~n,R~n)×Q_α(R~n,S~2)(其中α∈(0,1))时Cauchy问题的适定性,这里的Q_α(R~n)最早由Essen,Janson,Peng和Xiao(见[Essen M,Janson S,Peng L,Xiao J.Q space of several real variables,Indiana Univ Math J,2000,49:575-615])引入,是指由R~n中满足的所有可测函数f全体所组成的空间.上式左端在取遍Rn中所有以l(I)为边长且边平行于坐标轴的立方体I的全体中取上确界,而Q_α~(-1)(R~n):=▽·Q_α(R~n).最后证明了解(u,d)在类C([0,T);Q_(α,T)~(-1)(R~n,R~n))∩L_(loc)~∞((0,T);L~∞(R~n,R~n))×C([0,T);Q_α,T(R~n,S~2))∩L_(loc)~∞((0,T);W~(1,∞)(R~n,S~2))(其中0T≤∞)中是唯一的.  相似文献   

17.
In this paper, the authors give the local L~2 estimate of the maximal operator S_(φ,γ)~* of the operator family {S_(t,φ,γ)} defined initially by ■which is the solution(when n = 1) of the following dispersive equations(~*) along a curve γ:■where φ : R~+→R satisfies some suitable conditions and φ((-?)~(1/2)) is a pseudo-differential operator with symbol φ(|ξ|). As a consequence of the above result, the authors give the pointwise convergence of the solution(when n = 1) of the equation(~*) along curve γ.Moreover, a global L~2 estimate of the maximal operator S_(φ,γ)~* is also given in this paper.  相似文献   

18.
We study the existence of solutions for the following fractional Hamiltonian systems $$ \left\{ \begin{array}{ll} - _tD^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}u(t))-\lambda L(t)u(t)+\nabla W(t,u(t))=0,\\[0.1cm] u\in H^{\alpha}(\mathbb{R},\mathbb{R}^n), \end{array} \right. ~~~~~~~~~~~~~~~~~(FHS)_\lambda $$ where $\alpha\in (1/2,1)$, $t\in \mathbb{R}$, $u\in \mathbb{R}^n$, $\lambda>0$ is a parameter, $L\in C(\mathbb{R},\mathbb{R}^{n^2})$ is a symmetric matrix, $W\in C^1(\mathbb{R} \times \mathbb{R}^n,\mathbb{R})$. Assuming that $L(t)$ is a positive semi-definite symmetric matrix, that is, $L(t)\equiv 0$ is allowed to occur in some finite interval $T$ of $\mathbb{R}$, $W(t,u)$ satisfies some superquadratic conditions weaker than Ambrosetti-Rabinowitz condition, we show that (FHS)$_\lambda$ has a solution which vanishes on $\mathbb{R}\setminus T$ as $\lambda \to \infty$, and converges to some $\tilde{u}\in H^{\alpha}(\R, \R^n)$. Here, $\tilde{u}\in E_{0}^{\alpha}$ is a solution of the Dirichlet BVP for fractional systems on the finite interval $T$. Our results are new and improve recent results in the literature even in the case $\alpha =1$.  相似文献   

19.
We study the L p boundedness of the generalized Bochner–Riesz means S λ which are defined as $$S^{\lambda}f(x) = \mathcal{F}^{-1} \left[\left(1 - \rho \right)_{+}^{\lambda} \widehat{f} \right](x)$$ where ${\rho(\xi) = {\rm max}\{|\xi_{1}|, \ldots, |\xi_{\ell}|\}}$ for ${\xi = (\xi_{1},\ldots, \xi_{\ell}) \in \mathbb{R}^{{d}_{1}} \times \cdots \times \mathbb{R}^{{d}_{\ell}}}$ and ${\mathcal{F}^{-1}}$ is the inverse Fourier transform.  相似文献   

20.
The games and are played by two players in -complete and max -complete Boolean algebras, respectively. For cardinals such that or , the -distributive law holds in a Boolean algebra iff Player 1 does not have a winning strategy in . Furthermore, for all cardinals , the -distributive law holds in iff Player 1 does not have a winning strategy in . More generally, for cardinals such that , the -distributive law holds in iff Player 1 does not have a winning strategy in . For regular and , implies the existence of a Suslin algebra in which is undetermined.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号