首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文首先利用由两组具有局部最小支集的样条所组成的基函数,构造非均匀2型三角剖分上二元三次样条空间S1,23(△(2)mn)的若干样条拟插值算子.这些变差缩减算子由样条函数B1ij支集上5个网格点或中心和样条函数B2ij支集上5个网格点处函数值定义.这些样条拟插值算子具有较好的逼近性,甚至算子Vmn(f)能保持近最优的三次多项式性.然后利用连续模,分析样条拟插值算子Vmn(f)一致逼近于充分光滑的实函数.最后推导误差估计.  相似文献   

2.
本文主要研究广义非参数模型B样条Bayes估计 .将回归函数按照B样条基展开 ,我们不具体选择节点的个数 ,而是节点个数取均匀的无信息先验 ,样条函数系数取正态先验 ,用B样条函数的后验均值估计回归函数 .并给出了回归函数B样条Bayes估计的MCMC的模拟计算方法 .通过对Logistic非参数回归的模拟研究 ,表明B样条Bayes估计得到了很好的估计效果  相似文献   

3.
多项式样条函数是样条函数理论中最基本的内容,它的应用也最广.多项式 B 样条函数(以下简称为 B 样条)在多项式样条函数理论中起着极其重要的作用,并且已成为构造曲线、曲面与计算多项式样条的最为有效的工具.  相似文献   

4.
给出一种求解线性矩问题的逼近方法,并给出以B样条函数为基的数值例子,证明了该方法的有效性.  相似文献   

5.
样条函数的变差缩减方法(简称V·D逼近)是利用B样条构造曲线的一种十分有效的方法。这种方法具有模拟被逼近曲线几何形态的特点,且计算简单,特别适用于自由形式的曲线和曲面的设计,古典的Bernstein多项式逼近是V·D逼近的特例,而V·D逼近的理论基础是B样条所具有的V·D性质。本文采用与以往证明不同的途径,对B样条的V·D性质给出了一种纯代数的证明。该证明简单、自然。  相似文献   

6.
设Δ_2是平面区域Ω=[a,b,c,d]的四方向剖分,S_3~2(Δ_2)是在Δ_2分划下的光滑度1和次数3的二元样条函数空间。利用B-网方法,我们构造了由七片多项式组成的B样条基,并证明了给B样条基具有最小支集。最后,附带给出了基函数的若干简单性质。  相似文献   

7.
构造了一类连续的多项式样条算子来代替常用的多元Cardinal多项式样条插值算子作为 Rd上多元函数的逼近工具, 得到了这种样条算子的逼近误差, 由此结果, 得到多元多项式样条空间是一些 Rd上的Sobolev光滑函数类在Lp范数下的Kolmogorov 宽度及线性宽度的弱渐近极子空间.  相似文献   

8.
本文首先利用由两组具有局部最小支集的样条所组成的基函数,构造非均匀2 型三角剖分上二元三次样条空间S31,2mn(2))的若干样条拟插值算子. 这些变差缩减算子由样条函数Bij1支集上5 个网格点或中心和样条函数Bij2支集上5 个网格点处函数值定义. 这些样条拟插值算子具有较好的逼近性,甚至算子Vmn(f) 能保持近最优的三次多项式性. 然后利用连续模,分析样条拟插值算子Vmn(f)一致逼近于充分光滑的实函数. 最后推导误差估计.  相似文献   

9.
周天孝 《计算数学》1979,1(2):172-178
用插值节点的均匀性代替strang关于基函数的均匀性假设,也导出了最佳逼近误差估计。借助于对某种集合函数极值性质的考察,一般地获得了分片多项式函数的“反关系”。  相似文献   

10.
提出了广义变系数模型函数系数的一种新的估计方法.我们用B样条函数逼近函数系数,不具体选择节点的个数,而是节点个数取均匀的无信息先验,样条函数系数取正态先验,用Bayesian模型平均的方法估计各个函数系数.这种估计方法一个主要特点是允许各个函数系数所需节点个数的后验分布不同,因此允许不同函数系数使用不同的光滑参数.另外,本文还给出了Bayesian B样条估计的计算方法,并通过模拟例子,说明广义变系数模型的函数系数可以由Bayesian B样条估计方法得到很好的估计.  相似文献   

11.
胡齐芽 《计算数学》1997,19(4):353-358
1.引言考虑多滞量Volterra积分方程其中常数假定已知函数R在定义域内连续,以保证方程(1.1)存在唯一解形如(1.1)的Volterra延滞积分方程常出现在物理问题和生物模型中[2].由于“滞量”的影响,对其作理论分析和数值研究均比“古典”的Volterra积分方程更为困难.近来人们对Volterra延滞积分方程的数值求解越来越感兴趣[3,4],但目前的工作基本上只限于单滞量的情形:并采用所谓的“约束”网格(即要求步长人整除一,且假定T是,的整数倍(否则,应在更大的区间上求解),以保证数值解在结点集上具有理想的收敛率.显然,这些限…  相似文献   

12.
In this paper we investigate the attainable order of convergence of collocation approximations in certain polynomial spline spaces for solutions of a class of second-order volterra integro-differential equations with weakly singular kernels. While the use of quasi-uniform meshes leads, due to the nonsmooth nature of these solutions, to convergence of order less than one, regardless of the degree of the approximating spling function, collocation on suitably graded meshes will be shown to yield optimal convergence rates.  相似文献   

13.
基于分数阶微积分基本定理和三次B样条理论,构造了求解线性Caputo-Fabrizio型分数阶微分方程数值解的三次B样条方法,利用分数阶微积分基本定理将初值问题转化为关于解函数的表达式,再使用三次B样条函数逼近表达式中积分项的被积函数,进而计算了一类Caputo-Fabrizio型分数阶微分方程的数值解.给出了所构造的三次B样条方法的误差估计、收敛性和稳定性的理论证明.数值实验表明,该文数值方法在求解一类Caputo-Fabrizio型分数阶微分方程数值解时具有一定的可行性和有效性,且计算精度和计算效率优于现有的两种数值方法.  相似文献   

14.
Based on two-dimensional tensor product B-spline wavelet on the interval (BSWI), a class of C0 type plate elements is constructed to solve plane elastomechanics and moderately thick plate problems. Instead of traditional polynomial interpolation, the scaling functions of two-dimensional tensor product BSWI are employed to form the shape functions and construct BSWI elements. Unlike the process of direct wavelets adding in the previous work, the elemental displacement field represented by the coefficients of wavelets expansions is transformed into edges and internal modes via the constructed transformation matrix in this paper. The method combines the versatility of the conventional finite element method (FEM) with the accuracy of B-spline functions approximation and various basis functions for structural analysis. Some numerical examples are studied to demonstrate the proposed method and the numerical results presented are in good agreement with the closed-form or traditional FEM solutions.  相似文献   

15.
In this study, we employ Pascal polynomial basis in the two-dimensional Berger equation, which is a fourth order partial differential equation with applications to thin elastic plates. The polynomial approximation method based on Pascal polynomial basis can be readily adapted to obtain the numerical solutions of partial differential equations. However, a drawback with the polynomial basis is that the resulting coefficient matrix for the problem considered may be ill-conditioned. Due to this ill-conditioned behavior, we use a multiple-scale Pascal polynomial method for the Berger equation. The ill-conditioned numbers can be mitigated using this approach. Multiple scales are established automatically by selecting the collocation points in the multiple-scale Pascal polynomial method. This method is also a meshless method because there is no requirement to establish complex grids or for numerical integration. We present the solutions of six linear and nonlinear benchmark problems obtained with the proposed method on complexly shaped domains. The results obtained demonstrate the accuracy and effectiveness of the proposed method, as well showing its stability against large noise effects.  相似文献   

16.
This paper aims to develop a novel numerical approach on the basis of B-spline collocation method to approximate the solution of one-dimensional and two-dimensional nonlinear stochastic quadratic integral equations. The proposed approach is based on the hybrid of collocation method, cubic B-spline, and bi-cubic B-spline interpolation and Itô approximation. Using this method, the problem solving turns into a nonlinear system solution of equations that is solved by a suitable numerical method. Also, the convergence analysis of this numerical approach has been discussed. In the end, examples are given to test the accuracy and the implementation of the method. The results are compared with the results obtained by other methods to verify that this method is accurate and efficient.  相似文献   

17.
An algorithm for approximating solutions to 2nd-order linear differential equations with polynomial coefficients in B-polynomials (Bernstein polynomial basis) subject to Dirichlet conditions is introduced. The algorithm expands the desired solution in terms of B-polynomials over a closed interval [0, 1] and then makes use of the orthonormal relation of B-polynomials with its dual basis to determine the expansion coefficients to construct a solution. Matrix formulation is used throughout the entire procedure. However, accuracy and efficiency are dependent on the size of the set of B-polynomials, and the procedure is much simpler compared to orthogonal polynomials for solving differential equations. The current procedure is implemented to solve five linear equations and one first-order nonlinear equation, and excellent agreement is found between the exact and approximate solutions. In addition, the algorithm improves the accuracy and efficiency of the traditional methods for solving differential equations that rely on much more complicated numerical techniques. This procedure has great potential to be implemented in more complex systems where there are no exact solutions available except approximations.  相似文献   

18.
Jacobi polynomial approximations in multiple dimensions are investigated. They are applied to numerical solutions of singular differential equations. The convergence analysis and numerical results show their advantages.  相似文献   

19.
Jacobi polynomial approximations in multiple dimensions are investigated.They are applied to numerical solutions of singular differential equations.The convergence analysis and numerical results show their advantages.  相似文献   

20.
The traditional polynomial expansion method is deemed to be not suitable for solving two- and three-dimensional problems. The system matrix is usually singular and highly ill-conditioned due to large powers of polynomial basis functions. And the inverse of the coefficient matrix is not guaranteed for the evaluation of derivatives of polynomial basis functions with respect to the differential operator of governing equations. To avoid these troublesome issues, this paper presents an improved polynomial expansion method for the simulation of plate bending vibration problems. At first, the particular solutions using polynomial basis functions are derived analytically. Then these polynomial particular solutions are employed as basis functions instead of the original polynomial basis functions in the method of particular solutions for the approximated solutions. To alleviate the conditioning of the resultant matrix, we employ the multiple-scale method. Numerical experiments compared with analytical solutions, solutions by the Kansa’s method, and reference solutions in references confirm the efficiency and accuracy of the proposed method in the solution of Winkler and thin plate bending problems including irregular shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号