首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gauss product quadrature rules and collocation method are applied to reduce the second-kind nonlinear two-dimensional Fredholm integral equations (FIE) to a nonlinear system of equations. The convergence of the proposed numerical method is proved under certain conditions on the kernel of the integral equation. An iterative method for approximating the solution of the obtained nonlinear system is provided and its convergence is proved. Also, some numerical examples are presented to show the efficiency and accuracy of the proposed method.  相似文献   

2.
In this paper, we propose a method based on collocation of exponential B-splines to obtain numerical solution of a nonlinear second-order one-dimensional hyperbolic equation subject to appropriate initial and Dirichlet boundary conditions. The method is a combination of B-spline collocation method in space and two-stage, second-order strong-stability-preserving Runge–Kutta method in time. The proposed method is shown to be unconditionally stable. The efficiency and accuracy of the method are successfully described by applying the method to a few test problems.  相似文献   

3.
A numerical technique based on the spectral method is presented for the solution of nonlinear Volterra-Fredholm-Hammerstein integral equations. This method is a combination of collocation method and radial basis functions (RBFs) with the differentiation process (DRBF), using zeros of the shifted Legendre polynomial as the collocation points. Different applications of RBFs are used for this purpose. The integral involved in the formulation of the problems are approximated based on Legendre-Gauss-Lobatto integration rule. The results of numerical experiments are compared with the analytical solution in illustrative examples to confirm the accuracy and efficiency of the presented scheme.  相似文献   

4.
In this article, B-spline-based collocation method is employed to approximate the usual and modified Rosenau-RLW nonlinear equations. The weighted extended B-spline (WEB-spline) is used as the modified form of B-spline as the usual B-splines fail to obey the Dirichlet boundary conditions. The WEB method is more general method that allows to discretize the domain into finite number of elements not necessarily start from the boundary points of the domain. Our method omits the linearization process of the nonlinear partial differential equation (PDE). Different cases are discussed by setting the parameter p=2,3,4, and 6 that appears in Rosenau-RLW equations. The error estimation is calculated, which gives good agreement of the exact solution.  相似文献   

5.
Physical processes with memory and hereditary properties can be best described by fractional differential equations due to the memory effect of fractional derivatives. For that reason reliable and efficient techniques for the solution of fractional differential equations are needed. Our aim is to generalize the wavelet collocation method to fractional differential equations using cubic B-spline wavelet. Analytical expressions of fractional derivatives in Caputo sense for cubic B-spline functions are presented. The main characteristic of the approach is that it converts such problems into a system of algebraic equations which is suitable for computer programming. It not only simplifies the problem but also speeds up the computation. Numerical results demonstrate the validity and applicability of the method to solve fractional differential equation.  相似文献   

6.
In this paper, we derived the shifted Jacobi operational matrix (JOM) of fractional derivatives which is applied together with spectral tau method for numerical solution of general linear multi-term fractional differential equations (FDEs). A new approach implementing shifted Jacobi operational matrix in combination with the shifted Jacobi collocation technique is introduced for the numerical solution of nonlinear multi-term FDEs. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem. The proposed methods are applied for solving linear and nonlinear multi-term FDEs subject to initial or boundary conditions, and the exact solutions are obtained for some tested problems. Special attention is given to the comparison of the numerical results obtained by the new algorithm with those found by other known methods.  相似文献   

7.
A numerical technique based on the finite difference and collocation methods is presented for the solution of generalized Kuramoto-Sivashinsky (GKS) equation. The derivative matrices between any two families of B-spline functions are presented and are utilized to reduce the solution of GKS equation to the solution of linear algebraic equations. Numerical simulations for five test examples have been demonstrated to validate the technique proposed in the current paper. It is found that the simulating results are in good agreement with the exact solutions.  相似文献   

8.
古振东  孙丽英 《计算数学》2020,42(4):445-456
我们在参考了相关文献的基础上,考察了一类非线性Volterra积分方程的Chebyshev谱配置法.方法中,我们将该类非线性方程转化为两个方程进行数值逼近.我们选择N阶Chebyshev Gauss-Lobatto点作为配置点,对积分项用N阶高斯数值积分公式逼近.收敛性分析结果表明数值误差的收敛阶为N(1/2)-m,其中m是已知函数最高连续导数的阶数.我们也开展数值实验证实这一理论分析结果.  相似文献   

9.
This paper is concerned with a numerical scheme to solve a singularly perturbed convection-diffusion problem. The solution of this problem exhibits the boundary layer on the right-hand side of the domain due to the presence of singular perturbation parameter ε. The scheme involves B-spline collocation method and appropriate piecewise-uniform Shishkin mesh. Bounds are established for the derivative of the analytical solution. Moreover, the present method is boundary layer resolving as well as second-order uniformly convergent in the maximum norm. A comprehensive analysis has been given to prove the uniform convergence with respect to singular perturbation parameter. Several numerical examples are also given to demonstrate the efficiency of B-spline collocation method and to validate the theoretical aspects.  相似文献   

10.
In this work, we adapt and compare implicity linear collocation method and iterated implicity linear collocation method for solving nonlinear two dimensional Fredholm integral equations of Hammerstein type using IMQ-RBFs on a non-rectangular domain. IMQs show to be the most promising RBFs for this kind of equations. The proposed methods are mesh-free and they are independent of the geometry of domain. Convergence analysis of the proposed methods together with some benchmark examples is provided which support their reliability and numerical stability.  相似文献   

11.
We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.  相似文献   

12.
In this paper, an efficient numerical technique is applied to provide the approximate solution of nonlinear stochastic Itô‐Volterra integral equations driven by fractional Brownian motion with Hurst parameter . The proposed method is based on the operational matrices of modification of hat functions (MHFs) and the collocation method. In this approach, by approximating functions that appear in the integral equation by MHFs and using Newton's‐Cotes points, nonlinear integral equation is transformed to nonlinear system of algebraic equations. This nonlinear system is solved by using Newton's numerical method, and the approximate solution of integral equation is achieved. Some theorems related to error estimate and convergence analysis of the suggested scheme are also established. Finally, 2 illustrative examples are included to confirm applicability, efficiency, and accuracy of the proposed method. It should be noted that this scheme can be used to solve other appropriate problems, but some modifications are required.  相似文献   

13.
A numerical method is developed to solve the nonlinear Boussinesq equation using the quintic B-spline collocation method. Applying the Von Neumann stability analysis, the proposed method is shown to be unconditionally stable. An example has been considered to illustrate the efficiency of the method developed.  相似文献   

14.
A numerical method based on quintic B-spline has been developed to solve the linear and nonlinear Fredholm and Volterra integro-differential equations up to order 4. The solution and its derivatives are collocated by quintic B-spline and then the integral equation is approximated by the 4-points Gauss–Turán quadrature formula with respect to the weight function Legendre. The error analysis of proposed numerical method is studied theoretically. Numerical results are given to illustrate the efficiency of the proposed method which shows that our method can be applied for large values of N. The results are compared with the results obtained by other methods which show that our method is accurate.  相似文献   

15.
The aim of this paper is to present an efficient numerical procedure for solving linear second order Fredholm integro-differential equations. The scheme is based on B-spline collocation and cubature formulas. The analysis is accompanied by numerical examples. The results demonstrate reliability and efficiency of the proposed algorithm.   相似文献   

16.
古振东 《计算数学》2021,43(4):426-443
基于已有文献的研究成果及前期工作,我们考察了非线性弱奇性Volterra积分方程(VIE)的谱配置法,并对该方法进行了收敛性分析.得到的结论是数值误差呈谱收敛.误差收敛阶与配置点个数及方程解的正则性相关.数值实验也证实了这一结论.本文的方法解决了已有文献中类似数值方法(Allaei(2016),Sohrabi(2017))存在的问题.  相似文献   

17.
In this study, exponential B-spline collocation method is set up for solving Fisher’s equation. Integration of Fisher’s equation is managed by use of the exponential cubic B-spline in space and the Crank–Nicolson method in time. The effect of reaction and diffusion is observed by studying three test problems. A comparison is performed between the obtained numerical results and some earlier results using L and relative error norms.  相似文献   

18.
This paper aims to compare rational Chebyshev (RC) and Hermite functions (HF) collocation approach to solve Volterra's model for population growth of a species within a closed system. This model is a nonlinear integro‐differential equation where the integral term represents the effect of toxin. This approach is based on orthogonal functions, which will be defined. The collocation method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare these methods with some other numerical results and show that the present approach is applicable for solving nonlinear integro‐differential equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the nonlinear Volterra-Fredholm integro-differential equations are solved by using the homotopy analysis method (HAM). The approximation solution of this equation is calculated in the form of a series which its components are computed easily . The existence and uniqueness of the solution and the convergence of the proposed method are proved. A numerical example is studied to demonstrate the accuracy of the presented method.  相似文献   

20.
A numerical method based on B-spline is developed to solve the general nonlinear two-point boundary value problems up to order 6. The standard formulation of sextic spline for the solution of boundary value problems leads to non-optimal approximations. In order to derive higher orders of accuracy, high order perturbations of the problem are generated and applied to construct the numerical algorithm. The error analysis and convergence properties of the method are studied via Green’s function approach. O(h6) global error estimates are obtained for numerical solution of these classes of problems. Numerical results are given to illustrate the efficiency of the proposed method. Results of numerical experiments verify the theoretical behavior of the orders of convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号