首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
The authors recently defined a new graph invariant denoted by Ω(G) only in terms of a given degree sequence which is also related to the Euler characteristic. It has many important combinatorial applications in graph theory and gives direct information compared to the better known Euler characteristic on the realizability, connectedness, cyclicness, components, chords, loops etc. Many similar classification problems can be solved by means of Ω. All graphs G so that Ω(G) ≤-4 are shown to be disconnected, and if Ω(G) ≥-2, then the graph is potentially connected. It is also shown that if the realization is a connected graph and Ω(G) =-2, then certainly the graph should be a tree.Similarly, it is shown that if the realization is a connected graph G and Ω(G) ≥ 0, then certainly the graph should be cyclic. Also, when Ω(G) ≤-4, the components of the disconnected graph could not all be cyclic and if all the components of G are cyclic, then Ω(G) ≥ 0. In this paper, we study an extremal problem regarding graphs. We find the maximum number of loops for three possible classes of graphs.We also state a result giving the maximum number of components amongst all possible realizations of a given degree sequence.  相似文献   

2.
A graphG is supereulerian if G has a spanning eulerian subgraph.Boesch et al.[J.Graph Theory,1,79–84(1977)]proposed the problem of characterizing supereulerian graphs.In this paper,we prove that any 3-edge-connected graph with at most 11 edge-cuts of size 3 is supereulerian if and only if it cannot be contractible to the Petersen graph.This extends a former result of Catlin and Lai[J.Combin.Theory,Ser.B,66,123–139(1996)].  相似文献   

3.
Let G be a finite group. A Cayley graph over G is a simple graph whose automorphism group has a regular subgroup isomorphic to G. A Cayley graph is called a CI-graph(Cayley isomorphism) if its isomorphic images are induced by automorphisms of G. A well-known result of Babai states that a Cayley graph Γ of G is a CI-graph if and only if all regular subgroups of Aut(Γ) isomorphic to G are conjugate in Aut(Γ). A semi-Cayley graph(also called bi-Cayley graph by some authors) over G is a simple graph whose automorphism group has a semiregular subgroup isomorphic to G with two orbits(of equal size). In this paper, we introduce the concept of SCI-graph(semi-Cayley isomorphism)and prove a Babai type theorem for semi-Cayley graphs. We prove that every semi-Cayley graph of a finite group G is an SCI-graph if and only if G is cyclic of order 3. Also, we study the isomorphism problem of a special class of semi-Cayley graphs.  相似文献   

4.
For two positive integers k and d such that k ≥ 2d, Gkd is the graph with vertex set {0,1, ...,k-1} in which ij is an edge if and only if d ≤ |i-j| ≤ k-d. Clearly, Gk1 is a complete graph of k vertices and we always assume d ≥ 2 in the following. It is easy to see (also [1]) that a graph G is (k, d)-colorable if and only if there exists a homomorphism from G to Gkd.  相似文献   

5.
I. Cahit calls a graph H-cordial if it is possible to label the edges with the numbers from the set{1,-1} in such a way that, for some k, at each vertex v the sum of the labels on the edges incident with v is either k or-k and the inequalities |v(k)-v(-k)| ≤ 1 and|e(1)-e(-1)| ≤ 1 are also satisfied. A graph G is called to be semi-H-cordial, if there exists a labeling f, such that for each vertex v, |f(v)| ≤ 1, and the inequalities |e_f(1)-e_f(-1)| ≤ 1 and |vf(1)-vf(-1)| ≤ 1 are also satisfied. An odd-degree(even-degree) graph is a graph that all of the vertex is odd(even) vertex. Three conclusions were proved:(1) An H-cordial graph G is either odd-degree graph or even-degree graph;(2) If G is an odd-degree graph, then G is H-cordial if and only if |E(G)| is even;(3) A graph G is semi-H-cordial if and only if |E(G)| is even and G has no Euler component with odd edges.  相似文献   

6.
An r-uniform graph C is dense if and only if every proper subgraph G' of G satisfies λ(G') λ(G).,where λ(G) is the Lagrangian of a hypergraph G. In 1980's, Sidorenko showed that π(F), the Turán density of an γ-uniform hypergraph F is r! multiplying the supremum of the Lagrangians of all dense F-hom-free γ-uniform hypergraphs. This connection has been applied in the estimating Turán density of hypergraphs. When γ=2 the result of Motzkin and Straus shows that a graph is dense if and only if it is a complete graph. However,when r ≥ 3, it becomes much harder to estimate the Lagrangians of γ-uniform hypergraphs and to characterize the structure of all dense γ-uniform graphs. The main goal of this note is to give some sufficient conditions for3-uniform graphs with given substructures to be dense. For example, if G is a 3-graph with vertex set [t] and m edges containing [t-1]~(3),then G is dense if and only if m≥{t-2 3)+(t-2 2)+1. We also give a sufficient condition on the number of edges for a 3-uniform hypergraph containing a large clique minus 1 or 2 edges to be dense.  相似文献   

7.
INDEPENDENT-SET-DELETABLE FACTOR-CRITICAL POWER GRAPHS   总被引:3,自引:0,他引:3  
It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for every independent set 7 which has the same parity as |V(G)|, G-I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The k-th power of G, denoted by Gk, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G3 and T(G) (the total graph of G) are ID-factor-critical, and G4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D2 is ID-factor-critical.  相似文献   

8.
魏二玲  刘彦佩 《东北数学》2004,20(4):383-395
For a graph G of size ε≥1 and its edge-induced subgraphs H1 and H2 of size r(1≤r≤ε), H1 is said to be obtained from H2 by an edge jump if there exist four distinct vertices u,v,w and x in G such that (u,v)∈E(H2), (w,x)∈ E(G)-E(H2) and H1=H2-(u,v)+(w,x). In this article, the r-jump graphs (r≥3) are discussed. A graph H is said to be an r-jump graph of G if its vertices correspond to the edge induced graph of size r in G and two vertices are adjacent if and only if one of the two corresponding subgraphs can be obtained from the other by an edge jump. For k≥2, the k-th iterated r-jump graph Jrk(G) is defined as Jr(Jrk-1(G)), where Jr1(G)=Jr(G).An infinite sequence{Gi} of graphs is planar if every graph Gi is planar. It is shown that there does not exist a graph G for which the sequence {J3k(G)} is planar, where k is any positive integer. Meanwhile,lim gen(J3k(G))=∞,where gen(G) denotes the genus of a graph G, if the sequencek→∞J3k(G) is defined for every positive integer k. As for the 4-jump gra  相似文献   

9.
10.
Path Decomposition of Graphs with Given Path Length   总被引:3,自引:0,他引:3  
A path decomposition of a graph G is a list of paths such that each edge appears in exactly onepath in the list.G is said to admit a {P_l}-decomposition if G can be decomposed into some copies of P_l,whereP_l is a path of length l-1.Similarly,G is said to admit a {P_l,P_k}=decomposition if G can be decomposed intosome copies of P_l or P_k.An k-cycle,denoted by C_k,is a cycle with k vertices.An odd tree is a tree of which allvertices have odd degree.In this paper,it is shown that a connected graph G admits a {P_3,P_4}-decompositionif and only if G is neither a 3-cycle nor an odd tree.This result includes the related result of Yan,Xu andMutu.Moreover,two polynomial algorithms are given to find {P_3}-decomposition and {P_3,P_4}-decompositionof graphs,respectively.Hence,{P_3}-decomposition problem and {P_3,P_4}-decomposition problem of graphs aresolved completely.  相似文献   

11.
For integers k0,r0,a(k,r)-coloring of a graph G is a proper k-coloring of the vertices such that every vertex of degree d is adjacent to vertices with at least min{d,r}diferent colors.The r-hued chromatic number,denoted byχr(G),is the smallest integer k for which a graph G has a(k,r)-coloring.Define a graph G is r-normal,ifχr(G)=χ(G).In this paper,we present two sufcient conditions for a graph to be 3-normal,and the best upper bound of 3-hued chromatic number of a certain families of graphs.  相似文献   

12.
Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If C(u) ≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total-coloring of G, or a VDET coloring of G for short. The minimum number of colors required for a VDET colorings of G is denoted by X^evt(G), and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs mC3 and mC4.  相似文献   

13.
设2≤h≤3,l0,k≥0是整数,C_h(l,k)是由h-边连通简单图组成的集合,图G∈C_h(l,k)当且仅当对图G的任意一个二边割或三边割X,图G-X的每个分支都至少有︱V(G)-k︱/l个点.设e=u_1v_1和e'=u_2v_2是图G的两条边.若e≠e',G(e,e')是将图G中的边e=u_1v_1和e'=u_2v_2分别用路u_1v_ev_1和u_2v_e'v_2替换得到的图(其中,v_e,v_e'是不在V(G)中的两个新的点).若e=e',G(e,e')是将图G中的边e=u_1v_1用路u_1v_ev_1替换得到的图,也记作G(e).若对任意的e,e'∈E(G),G(e,e')都有支撑(v_e,v_e')迹,则称图G是强支撑可迹的.作者证明了,若图G∈C_2(4,k)且|V(G)|5k,则要么图G是强支撑可迹图,要么存在e,e'∈E(G),使得G(e,e')可以收缩成一个有限图类F中的图.当k=4时,F被完全确定了.  相似文献   

14.
图的邻点可区别全色数的一个上界   总被引:5,自引:0,他引:5  
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), where
C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△.  相似文献   

15.
Let P(G,λ) be the chromatic polynomial of a simple graph G. A graph G is chromatically unique if for any simple graph H, P(H,λ) = P(G,λ) implies that H is isomorphic to G. Many sufficient conditions guaranteeing that some certain complete tripartite graphs are chromatically unique were obtained by many scholars. Especially, in 2003, Zou Hui-wen showed that if n 31m2 + 31k2 + 31mk+ 31m? 31k+ 32√m2 + k2 + mk, where n,k and m are non-negative integers, then the complete tripartite graph K(n - m,n,n + k) is chromatically unique (or simply χ-unique). In this paper, we prove that for any non-negative integers n,m and k, where m ≥ 2 and k ≥ 0, if n ≥ 31m2 + 31k2 + 31mk + 31m - 31k + 43, then the complete tripartite graph K(n - m,n,n + k) is χ-unique, which is an improvement on Zou Hui-wen's result in the case m ≥ 2 and k ≥ 0. Furthermore, we present a related conjecture.  相似文献   

16.
最近Ando等证明了在一个$k$($k\geq 5$ 是一个整数) 连通图 $G$ 中,如果 $\delta(G)\geq k+1$, 并且 $G$ 中既不含 $K^{-}_{5}$,也不含 $5K_{1}+P_{3}$, 则$G$ 中含有一条 $k$ 可收缩边.对此进行了推广,证明了在一个$k$连通图$G$中,如果 $\delta(G)\geq k+1$,并且 $G$ 中既不含$K_{2}+(\lfloor\frac{k-1}{2}\rfloor K_{1}\cup P_{3})$,也不含 $tK_{1}+P_{3}$ ($k,t$都是整数,且$t\geq 3$),则当 $k\geq 4t-7$ 时, $G$ 中含有一条 $k$ 可收缩边.  相似文献   

17.
可迹图即为一个含有Hamilton路的图.令$N[v]=N(v)\cup\{v\}$, $J(u,v)=\{w\in N(u)\cap N(v):N(w)\subseteq N[u]\cup N[v]\}$.若图中任意距离为2的两点$u,v$满足$J(u,v)\neq \emptyset$,则称该图为半无爪图.令$\sigma_{k}(G)=\min\{\sum_{v\in S}d(v):S$为$G$中含有$k$个点的独立集\},其中$d(v)$表示图$G$中顶点$v$的度.本论文证明了若图$G$为一个阶数为$n$的连通半无爪图,且$\sigma_{3}(G)\geq {n-2}$,则图$G$为可迹图; 文中给出一个图例,说明上述结果中的界是下确界; 此外,我们证明了若图$G$为一个阶数为$n$的连通半无爪图,且$\sigma_{2}(G)\geq \frac{2({n-2})}{3}$,则该图为可迹图.  相似文献   

18.
图G(V,E)的一个k-正常全染色f叫做一个k-点强全染色当且仅当对任意v∈V(G), N[v]中的元素被染不同色,其中N[v]={u|uv∈V(G)}∪{v}.χTvs(G)=min{k|存在图G的k- 点强全染色}叫做图G的点强全色数.对3-连通平面图G(V,E),如果删去面fo边界上的所有点后的图为一个树图,则G(V,E)叫做一个Halin-图.本文确定了最大度不小于6的Halin- 图和一些特殊图的的点强全色数XTvs(G),并提出了如下猜想:设G(V,E)为每一连通分支的阶不小于6的图,则χTvs(G)≤△(G) 2,其中△(G)为图G(V,E)的最大度.  相似文献   

19.
Let G be a connected graph on n vertices with chromatic number k, and let ρ(G)be the distance signless Laplacian spectral radius of G. We show that ρ(G) ≥ 2n + 2「n k」- 4,with equality if and only if G is a regular Tur′an graph.  相似文献   

20.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号