首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究三阶有理差分方程x_(n+1)=ax_(n-1)+x_(n-1)x_n/bx_(n-2)+cx_n,n=0,1,2,...的奇点集和解{x_n}_(n=-2)~∞的渐近性,其中a,b,c∈R,初始值x_(-2),x_(-1),x_0∈R.由a,b,c的取值的不同,而得到解的不同的渐近性.  相似文献   

2.
Banach空间中渐近非扩张映射逼近序列的强收敛性   总被引:7,自引:0,他引:7       下载免费PDF全文
该文研究了序列{x_n}的收敛性。其中x_0∈C, x_{n+1}=α_n T^n x_n+(1-α_n)x, n=0,1,2,…,这里0≤α_n≤1,T是Banach空间中非空闭凸子集C到自身的渐近非扩张映射。同时证明了:当z_n=(1-t_n/k_n)u+t_n/k_n T^n z_n且lim_{n→∞}{(k_n-1)/(1-t_n)}=0,lim‖z_n-Tz_n‖=0时,T有不动点当且仅当{z_n}有界。这时{z_n}强收敛于T的不动点。  相似文献   

3.
n个实数x_1、x_2、…x_n的算术平均数(x_1+x_2+…+x_n)/n有如下简单性质: 若A≤x_1、x_2…、x_n(≤B),则 A≤(x_1+x_2+…+x_n)/n(≤B) 当且仅当A=x_1=x_2=…=x_n(=B)时等号成立。作为性质1的推论,特别地有推论1若x_1、x_2、…、x_n是n个实数,则min{x_f|i=1,2,…,n}≤≤(x_1+x_2+…+x_n)/n≤max{x_f|i=1,2,…,n} 当且仅当x_1=x_2=…=x_n时等号成立。推论2 若A≤x_1+x_2+…+x_n(≤B),则至少有一个x_k(x_e),使A/n≤x_k(x_a≤B/n),当x_1、x_2。…,x_n互不相等或A相似文献   

4.
<正>2017年北京数学高考压轴题具有极大的区分度,尽可彰显学生数学能力的差异.2017年北京高考理数20题设{a_n}和{b_n}是两个等差数列,记c_n=max{b_1-a_1n,b_2-a_2n,…,b_n-a_nn}(n=1,2,3,…),其中max{x_1,x_2,…,x_s}表示x_1,x_2,…,x_s这s个数中最大的数.(1)若a_n=n,b_n=2n-1,求c_1,c_2,c_3的值,并证明{c_n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,c_n/n>M;  相似文献   

5.
设E是一致光滑的Banach空间,A:D(A)E→2~E是一个满足值域条件的增生算子,进一步满足线性增长条件:‖Ax‖≤C(1+‖x‖)对某个常数C0, x∈D(A).设z∈D(A)是任意固定元,x_1∈D(A), A~(-1)0≠Φ.定义序列{x_n}D(A)如下:x_(n+1)∈x_n-λ_n(Ax_n+θ_n(x_n-z+e_n)),n≥1,其中{λ_n}与{θ_n}是满足一定条件的非负数列.则x_n→x~*∈A~(-1)(0),(n→∞).作为应用,我们推出构造连续伪压缩映像的不动点的收敛定理.  相似文献   

6.
Let $-1=x_{n,n}相似文献   

7.
这是八六年高考数学第八题:已知x_1>0,x_1≠1 且x_n+1=x_n(x_n~2+3)/3x_n~2+1(n=1,2,…)。试证:数列{x_n}或者对任意自然数都满足x_nx_(n+1)。此题证法很多,先求通项公式是一个类型的方法,下面给出一种求通项公式的简便方法。由已知  相似文献   

8.
第30届IMO第二试(1989年7月19日)最后一题是: 设n是正整数,我们说集合{1,2,…,2n}的一个排列(x_1,x_2,…,x_(2n))具有性质P,如果在{1,2.…,2n-1}当中至少有一个i使得  相似文献   

9.
设f是区间[a,b]上连续的凸函数,我们证明了Hadamard的不等式 $[f(\frac{{a + b}}{2}) \le \frac{1}{{b - a}}\int_a^b {f(x)dx \le \frac{{f(a) + f(b)}}{2}}$ 可以拓广成对[a,b]中任意n+1个点x_0,\cdots,x_n和正数组p_0,\cdots,p_n都成立的下列不等式 $f(\frac{\sum\limits_{i=0}^n p_ix_i}{\sum\limits_{i=0}^n p_i}) \leq |\Omega|^-1 \int_\Omega f(x(t))dt \leq \frac{\sum\limits _{i=0}^n {p_if(x_i)}}{\sum\limits_{i=0}^n p_i}$ 式中\Omega是一个包含于n维单位立方体的n维长方体,其重心的第i个坐标为$\sum\limits _{j=i}^n p_j /\sum\limits_{j=i-1}^n p_i$,|\Omega|为\Omega的体积,对\Omega中的任意点$t=(t_1,\cdots,t_n)$, $w(t)=x_0(1-t_1)+\sum\limits _{i=1}^{n-1} x_i(1-t_{i+1})\prod\limits_{j = 1}^i {{t_j}} +x_n \prod\limits _{j=1}^n t_j$ 不等式中两个等号分别成立的情形亦已被分离出来。 此不等式是著名的Jensen 不等式的精密化。  相似文献   

10.
假定 $X$ 是具有范数$\|\cdot\|$的复 Banach 空间, $n$ 是一个满足 $\dim X\geq n\geq2$的正整数. 本文考虑由下式定义的推广的Roper-Suffridge算子 $\Phi_{n,\beta_2, \gamma_2, \ldots , \beta_{n+1}, \gamma_{n+1}}(f)$: \begin{equation} \begin{array}{lll} \Phi _{n, \beta_2, \gamma_2, \ldots, \beta_{n+1},\gamma_{n+1}}(f)(x) &;\hspace{-3mm}=&;\hspace{-3mm}\dl\he{j=1}{n}\bigg(\frac{f(x^*_1(x))}{x^*_1(x)})\bigg)^{\beta_j}(f''(x^*_1(x))^{\gamma_j}x^*_j(x) x_j\\ &;&;+\bigg(\dl\frac{f(x^*_1(x))}{x^*_1(x)}\bigg)^{\beta_{n+1}}(f''(x^*_1(x)))^{\gamma_{n+1}}\bigg(x-\dl\he{j=1}{n}x^*_j(x) x_j\bigg),\nonumber \end{array} \end{equation} 其中 $x\in\Omega_{p_1, p_2, \ldots, p_{n+1}}$, $\beta_1=1, \gamma_1=0$ 和 \begin{equation} \begin{array}{lll} \Omega_{p_1, p_2, \ldots, p_{n+1}}=\bigg\{x\in X: \dl\he{j=1}{n}| x^*_j(x)|^{p_j}+\bigg\|x-\dl\he{j=1}{n}x^*_j(x)x_j\bigg\|^{p_{n+1}}<1\bigg\},\nonumber \end{array} \end{equation} 这里 $p_j>1 \,( j=1, 2,\ldots, n+1$), 线性无关族 $\{x_1, x_2, \ldots, x_n \}\subset X $ 与 $\{x^*_1, x^*_2, \ldots, x^*_n \}\subset X^* $ 满足 $x^*_j(x_j)=\|x_j\|=1 (j=1, 2, \ldots, n)$ 和 $x^*_j(x_k)=0 \, (j\neq k)$, 我们选取幂函数的单值分支满足 $(\frac{f(\xi)}{\xi})^{\beta_j}|_{\xi=0}= 1$ 和 $(f''(\xi))^{\gamma_j}|_{\xi=0}=1, \, j=2, \ldots , n+1$. 本文将证明: 对某些合适的常数$\beta_j, \gamma_j$, 算子$\Phi_{n,\beta_2, \gamma_2, \ldots, \beta_{n+1}, \gamma_{n+1}}(f)$ 在$\Omega_{p_1, p_2, \ldots , p_{n+1}}$上保持$\alpha$阶的殆$\beta$型螺形映照和 $\alpha$阶的$\beta$型螺形映照.  相似文献   

11.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

12.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

13.
For anyx ∈ r put $$c(x) = \overline {\mathop {\lim }\limits_{t \to \infty } } \mathop {\min }\limits_{(p,q\mathop {) \in Z}\limits_{q \leqslant t} \times N} t\left| {qx - p} \right|.$$ . Let [x0; x1,..., xn, ...] be an expansion of x into a continued fraction and let \(M = \{ x \in J,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n< \infty \}\) .ForxM put D(x)=c(x)/(1?c(x)). The structure of the set \(\mathfrak{D} = \{ D(x),x \in M\}\) is studied. It is shown that $$\mathfrak{D} \cap (3 + \sqrt 3 ,(5 + 3\sqrt 3 )/2) = \{ D(x^{(n,3} )\} _{n = 0}^\infty \nearrow (5 + 3\sqrt 3 )/2,$$ where \(x^{(n,3)} = [\overline {3;(1,2)_n ,1} ].\) This yields for \(\mu = \inf \{ z,\mathfrak{D} \supset (z, + \infty )\}\) (“origin of the ray”) the following lower bound: μ?(5+3√3)/2=5.0n>(5 + 3/3)/2=5.098.... Suppose a∈n. Put \(M(a) = \{ x \in M,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n = a\}\) , \(\mathfrak{D}(a) = \{ D(x),x \in M(a)\}\) . The smallest limit point of \(\mathfrak{D}(a)(a \geqslant 2)\) is found. The structure of (a) is studied completely up to the smallest limit point and elucidated to the right of it.  相似文献   

14.
含最大值项二阶中立型差分方程的渐近性   总被引:2,自引:0,他引:2  
考虑含最大值项二阶中立型差分方程其中{an},{pn}和{qn}为实数列,k和■为整数且k≥1,■≥0,我们研究了方程(*)非振动解的渐近性.通过例子说明了含最大值项的方程和相应的不含最大值项方程之间的区别.  相似文献   

15.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

16.
Для линейных методов суммирования рядов Ф урье (1) $$L_n (f;x) = \frac{1}{\pi }\mathop \smallint \limits_{ - \pi }^\pi f(x + t)\left( {\frac{1}{2} + \sum\limits_{k = 1}^n {\lambda _{k,n} } \cos kt} \right)dt$$ на классах $$C(\varepsilon ) = \{ f:E_n (f) \leqq \varepsilon _n ;\forall n \geqq 0\} ,\varepsilon = \{ \varepsilon _n \} _{n = 0.}^\infty \varepsilon _n \downarrow 0,$$ доказываются:
  1. оценки для порядка р оста норм ∥{Ln∥, если из вестен порядок приближения операторами (1) некоторого классаС (?) (при этом, если опера торы (1) приближают класс С(е) с наилучшим порядком, то находится точная а симптотика возрастания норм {∥ Ln∥);
  2. сравнительные оцен ки порядков приближе ния классовС(?) операторами (1), если известен порядок при ближения ими некотор ого более узкого класса С(?*).
В том случае, когда опе раторы (1) приближают кл асс С(?*) с наилучшим порядком, получаются точные по рядковые оценки для л юбого более широкого класса С(?).  相似文献   

17.
We study large time asymptotic behavior of solutions to the periodic problem for the nonlinear damped wave equation
$ \left\{ {l} u_{tt}+2\alpha u_{t}-\beta u_{xx}=-\lambda \left| u\right| ^{\sigma}u,\text{ }x\in \Omega ,t >0 , \\ u(0,x)=\phi \left( x\right) ,\text{}u_{t}(0,x)=\psi \left( x\right) ,\text{ }x\in \Omega , \right. $ \left\{ \begin{array}{l} u_{tt}+2\alpha u_{t}-\beta u_{xx}=-\lambda \left| u\right| ^{\sigma}u,\text{ }x\in \Omega ,t >0 , \\ u(0,x)=\phi \left( x\right) ,\text{}u_{t}(0,x)=\psi \left( x\right) ,\text{ }x\in \Omega , \end{array} \right.  相似文献   

18.
In this paper, we investigate the positive solutions to the following integral system with a polyharmonic extension operator on R~+_n:{u(x)=c_n,a∫_?R_+~n(x_n~(1-a_v)(y)/|x-y|~(n-a))dy,x∈R_+~n,v(y)=c_n,a∫_R_+~n(x_n~(1-a_uθ)(x)/|x-y|~(n-a))dx,y∈ ?R_+~n,where n 2, 2-n a 1, κ, θ 0. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Chen(2014). The explicit formulations of positive solutions are obtained by the method of moving spheres for the critical case κ =n-2+a/n-a,θ =n+2-a/ n-2+a. Moreover,we also give the nonexistence of positive solutions in the subcritical case for the above system.  相似文献   

19.
It is proved that if P(D) is a regular, almost hypoelliptic operator and
$ L_{2,\delta } = \left\{ {u:\left\| u \right\|_{2,\delta } = \left[ {\int {\left( {|u(x)|e^{ - \delta |x|} } \right)^2 dx} } \right]^{1/2} < \infty } \right\},\delta > 0, $ L_{2,\delta } = \left\{ {u:\left\| u \right\|_{2,\delta } = \left[ {\int {\left( {|u(x)|e^{ - \delta |x|} } \right)^2 dx} } \right]^{1/2} < \infty } \right\},\delta > 0,   相似文献   

20.
Two theorems in Ref. 1 are generalized. It is proved that, ifV(A,Γ) is the set of points that can be steered to the origin along a solution of the control systemx′=Ax?c, ifc(t)∈Γ, Γ is a compact subset ofR n , 0∈ intrelco Γ, and if a rank condition holds, then the minimal time functionT(·) is a viscosity solution of the Bellman equation $$\max \{ \left\langle {DT(x),\gamma - Ax} \right\rangle :\gamma \varepsilon co\Gamma \} - 1 = 0,x\varepsilon V(A,\Gamma )\backslash \{ 0\} ,$$ and of the Hàjek equation $$1 - \max \{ \left\langle {DT(x),\exp [ - AT(x)]} \right\rangle :\gamma \varepsilon co\Gamma \} = 0,x\varepsilon V(A,\Gamma ).$$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号