首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
A vertex labeling f : V → Z2 of a simple graph G = (V, E) induces two edge labelings f+ , f*: E → Z2 defined by f+ (uv) = f(u)+f(v) and f*(uv) = f(u)f(v). For each i∈Z2 , let vf(i) = |{v ∈ V : f(v) = i}|, e+f(i) = |{e ∈ E : f+(e) = i}| and e*f(i)=|{e∈E:f*(e)=i}|. We call f friendly if |vf(0)-vf(1)|≤ 1. The friendly index set and the product-cordial index set of G are defined as the sets{|e+f(0)-e+f(1)|:f is friendly} and {|e*f(0)-e*f(1)| : f is friendly}. In this paper we study and determine the connection between the friendly index sets and product-cordial index sets of 2-regular graphs and generalized wheel graphs.  相似文献   

2.
Let G =(V, E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f* : E → Z2 defined by f*(xy) = f(x) +f(y) for each xy ∈ E. For i ∈ Z2, let vf(i) = |f^-1(i)| and ef(i) = |f*^-1(i)|. A labeling f is called friendly if |vf(1) - vf(0)| ≤ 1. For a friendly labeling f of a graph G, we define the friendly index of G under f by if(G) = e(1) - el(0). The set [if(G) | f is a friendly labeling of G} is called the full friendly index set of G, denoted by FFI(G). In this paper, we will determine the full friendly index set of every Cartesian product of two cycles.  相似文献   

3.
A lower bound on the total signed domination numbers of graphs   总被引:4,自引:0,他引:4  
Let G be a finite connected simple graph with a vertex set V(G)and an edge set E(G). A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1}.The weight of f is W(f)=∑_(x∈V)(G)∪E(G))f(X).For an element x∈V(G)∪E(G),we define f[x]=∑_(y∈NT[x])f(y).A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1} such that f[x]≥1 for all x∈V(G)∪E(G).The total signed domination numberγ_s~*(G)of G is the minimum weight of a total signed domination function on G. In this paper,we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values ofγ_s~*(G)when G is C_n and P_n.  相似文献   

4.
I. Cahit calls a graph H-cordial if it is possible to label the edges with the numbers from the set{1,-1} in such a way that, for some k, at each vertex v the sum of the labels on the edges incident with v is either k or-k and the inequalities |v(k)-v(-k)| ≤ 1 and|e(1)-e(-1)| ≤ 1 are also satisfied. A graph G is called to be semi-H-cordial, if there exists a labeling f, such that for each vertex v, |f(v)| ≤ 1, and the inequalities |e_f(1)-e_f(-1)| ≤ 1 and |vf(1)-vf(-1)| ≤ 1 are also satisfied. An odd-degree(even-degree) graph is a graph that all of the vertex is odd(even) vertex. Three conclusions were proved:(1) An H-cordial graph G is either odd-degree graph or even-degree graph;(2) If G is an odd-degree graph, then G is H-cordial if and only if |E(G)| is even;(3) A graph G is semi-H-cordial if and only if |E(G)| is even and G has no Euler component with odd edges.  相似文献   

5.
Let G be a graph with vertex set V(G) and edge set E(G) and let g and f be two integervalued functions defined on V(G) such that 2k - 2 ≤g(x)≤f(x) for all x∈V(G). Let H be a subgraph of G with mk edges. In this paper, it is proved that every (mg m-1,mf-m 1)-graph G has (g, f)-factorizations randomly k-orthogonal to H under some special conditions.  相似文献   

6.
Let G =(V, E) be a simple graph with vertex set V and edge set E. A signed mixed dominating function of G is a function f:V∪E→ {-1, 1} such that ∑_(y∈N_m(x)∪{x})f(y)≥ 1for every element x∈V∪E, where N_m(x) is the set of elements of V∪E adjacent or incident to x. The weight of f is w(f) =∑_(x∈V∪E)f(x). The signed mixed domination problem is to find a minimum-weight signed mixed dominating function of a graph. In this paper we study the computational complexity of signed mixed domination problem. We prove that the signed mixed domination problem is NP-complete for bipartite graphs, chordal graphs, even for planar bipartite graphs.  相似文献   

7.
Let G be a graph with vertex set V(G) and edge set E(G) and let g and f be two integer-valued functions defined on V(G) such that 2k-1≤g(x) ≤ f(x) for all x ∈ V(G). Let H be a subgraph of G with mk edges . In this paper it is proved that every (mg m - 1,mf- m 1)-graph G has (g, f)-factorizations randomly κ-orthogonal to H and shown that the result is best possible.  相似文献   

8.
Let G be a simple connected graph with vertex set V(G) and edge set E(G).The augmented Zagreb index of a graph G is defined asAZI(G) =∑uv∈E(G)(d_ud_v/(d_u + d_v-2))~3,and the atom-bond connectivity index(ABC index for short) of a graph G is defined asABC(G) =∑uv∈E(G)((d_u + d_v-2)/d_ud_v),where d_u and d_v denote the degree of vertices u and v in G,respectively.In this paper,trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index are determined,respectively.  相似文献   

9.
Let G = (V, E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V (G) ∪ E(G) onto the set of consecutive integers 1, 2, . . . , p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f (x) assigned to the vertex x together with all values f (xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0, 1, . . . , r + 1.  相似文献   

10.
Let G be a bipartite graph with vertex set V(G) and edge set E(G), and let g and f be two nonnegative integer-valued functions defined on V(G) such that g(x)≤ f(x) for every vertex x of V(G). A (g. f)-coloring of G is a generalized edge-coloring in which each color appears at each vertex x at least g(x) and at most f(x) times. In this paper a polynomial algorithm to find a (g. f)-coloring of a bipartite graph with some constraints using the minimum number of colors is given. Furthermore, we show that the results in this paper are best possible.  相似文献   

11.
设图$G$的一个列表分配为映射$L: V(G)\bigcup E(G)\rightarrow2^{N}$. 如果存在函数$c$使得对任意$x\in V(G)\cup E(G)$有$c(x)\in L(x)$满足当$uv\in E(G)$时, $|c(u)-c(v)|\geq1$, 当边$e_{1}$和$e_{2}$相邻时, $|c(e_{1})-c(e_{2})|\geq1$, 当点$v$和边$e$相关联时, $|c(v)-c(e)|\geq 2$, 则称图$G$为$L$-$(p,1)$-全可标号的. 如果对于任意一个满足$|L(x)|=k,x\in V(G)\cup E(G)$的列表分配$L$来说, $G$都是$L$-$(2,1)$-全可标号的, 则称$G$是 $k$-(2,1)-全可选的. 我们称使得$G$为$k$-$(2,1)$-全可选的最小的$k$为$G$的$(2,1)$-全选择数, 记作$C_{2,1}^{T}(G)$. 本文, 我们证明了若$G$是一个$\Delta(G)\geq 11$的平面图, 则$C_{2,1}^{T}(G)\leq\Delta+4$.  相似文献   

12.
The induced matching cover number of a graph G without isolated vertices,denoted by imc(G),is the minimum integer k such that G has k induced matchings M1,M2,…,Mk such that,M1∪M2 ∪…∪Mk covers V(G).This paper shows if G is a nontrivial tree,then imc(G) ∈ {△*0(G),△*0(G) + 1,△*0(G)+2},where △*0(G) = max{d0(u) + d0(v) :u,v ∈ V(G),uv ∈ E(G)}.  相似文献   

13.
图的邻点可区别全色数的一个上界   总被引:5,自引:0,他引:5  
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), where
C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△.  相似文献   

14.
$f: E(G)\rightarrow\{-1,1\}$称为图$G =(V,E)$的一个符号边控制函数 (简称SEDF),如果$f[e]=f(N[e])=\sum_{e''\in N[e]}f(e'')\geq1$对于图$G$的每条边$e\in E$都成立. $w(f)=\sum_{e\in E}f(e)$称为函数$f$的权. $G$的符号边控制数$\gamma_{s}\,''(G)$是指$G$的所有符号边控制函数的最小权.本文对完全多部图的符号边控制数进行研究.对于完全$r$-部图, 当$r$为偶数并且各部的顶点数相同的情况下,我们得到了这一参数的若干下界和上界.  相似文献   

15.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

16.
关于图的符号边全控制数   总被引:1,自引:0,他引:1  
Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G).  相似文献   

17.
$P_m\times K_n$的邻点可区别全色数   总被引:1,自引:0,他引:1       下载免费PDF全文
设 $G$ 是简单图. 设$f$是一个从$V(G)\cup E(G)$ 到$\{1, 2,\cdots, k\}$的映射. 对每个$v\in V(G)$, 令 $C_f (v)=\{f(v)\}\cup \{f(vw)|w\in V(G), vw\in E(G)\}$. 如果 $f$是$k$-正常全染色, 且对任意$u, v\in V(G), uv\in E(G)$, 有$C_f(u)\ne C_f(v)$, 那么称 $f$ 为图$G$的邻点可区别全染色(简称为$k$-AVDTC).数 $\chi_{at}(G)=\min\{k|G$ 有$k$-AVDTC\}称为图$G$的邻点可区别全色数.本文给出路$P_m$和完全图$K_n$ 的Cartesion积的邻点可区别全色数.  相似文献   

18.
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles.The acyclic edge chromatic number of a graph G is the minimum number k such that there exists an acyclic edge coloring using k colors and is denoted by χ’ a(G).In this paper we prove that χ ’ a(G) ≤(G) + 5 for planar graphs G without adjacent triangles.  相似文献   

19.
For positive integers j and k with j ≥ k, an L(j, k)-labeling of a graph G is an assignment of nonnegative integers to V(G) such that the difference between labels of adjacent vertices is at least j, and the difference between labels of vertices that are distance two apart is at least k. The span of an L(j, k)-labeling of a graph G is the difference between the maximum and minimum integers it uses. The λj, k-number of G is the minimum span taken over all L(j, k)-labelings of G. An m-(j, k)-circular labeling of a graph G is a function f : V(G) →{0, 1, 2,..., m - 1} such that |f(u) - f(v)|m ≥ j if u and v are adjacent; and |f(u) - f(v)|m 〉 k ifu and v are at distance two, where |x|m = min{|xl|, m-|x|}. The minimum integer m such that there exists an m-(j, k)-circular labeling of G is called the σj,k-number of G and is denoted by σj,k(G). This paper determines the σ2,1-number of the Cartesian product of any three complete graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号