首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 238 毫秒
1.
A vertex labeling f : V → Z2 of a simple graph G = (V, E) induces two edge labelings f+ , f*: E → Z2 defined by f+ (uv) = f(u)+f(v) and f*(uv) = f(u)f(v). For each i∈Z2 , let vf(i) = |{v ∈ V : f(v) = i}|, e+f(i) = |{e ∈ E : f+(e) = i}| and e*f(i)=|{e∈E:f*(e)=i}|. We call f friendly if |vf(0)-vf(1)|≤ 1. The friendly index set and the product-cordial index set of G are defined as the sets{|e+f(0)-e+f(1)|:f is friendly} and {|e*f(0)-e*f(1)| : f is friendly}. In this paper we study and determine the connection between the friendly index sets and product-cordial index sets of 2-regular graphs and generalized wheel graphs.  相似文献   

2.
A three-valued function f: V → {−1, 0, 1} defined on the vertices of a graph G= (V, E) is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every υV, f(N(υ)) ⩾ 1, where N(υ) consists of every vertex adjacent to υ. The weight of an MTDF is f(V) = Σf(υ), over all vertices υV. The minus total domination number of a graph G, denoted γ t (G), equals the minimum weight of an MTDF of G. In this paper, we discuss some properties of minus total domination on a graph G and obtain a few lower bounds for γ t (G).  相似文献   

3.
The closed neighborhood NG[e] of an edge e in a graph G is the set consisting of e and of all edges having an end-vertex in common with e. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If for each eE(G), then f is called a signed edge dominating function of G. The signed edge domination number γs(G) of G is defined as . Recently, Xu proved that γs(G) ≥ |V(G)| − |E(G)| for all graphs G without isolated vertices. In this paper we first characterize all simple connected graphs G for which γs(G) = |V(G)| − |E(G)|. This answers Problem 4.2 of [4]. Then we classify all simple connected graphs G with precisely k cycles and γs(G) = 1 − k, 2 − k. A. Khodkar: Research supported by a Faculty Research Grant, University of West Georgia. Send offprint requests to: Abdollah Khodkar.  相似文献   

4.
A (p, q)-graph G is called super edge-magic if there exists a bijective function f : V(G) U E(G) →{1, 2 p+q} such that f(u)+ f(v)+f(uv) is a constant for each uv C E(G) and f(Y(G)) = {1,2,...,p}. In this paper, we introduce the concept of strong super edge-magic labeling as a particular class of super edge-magic labelings and we use such labelings in order to show that the number of super edge-magic labelings of an odd union of path-like trees (mT), all of them of the same order, grows at least exponentially with m.  相似文献   

5.
Let G be a graph with vertex set V and edge set E, and let A be an abelian group. A labeling f:VA induces an edge labeling f:EA defined by f(xy)=f(x)+f(y). For iA, let vf(i)=card{vV:f(v)=i} and ef(i)=card{eE:f(e)=i}. A labeling f is said to be A-friendly if |vf(i)−vf(j)|≤1 for all (i,j)∈A×A, and A-cordial if we also have |ef(i)−ef(j)|≤1 for all (i,j)∈A×A. When A=Z2, the friendly index set of the graph G is defined as {|ef(1)−ef(0)|:the vertex labelingf is Z2-friendly}. In this paper we completely determine the friendly index sets of 2-regular graphs. In particular, we show that a 2-regular graph of order n is cordial if and only if n?2 (mod 4).  相似文献   

6.
 Suppose G is a graph and T is a set of non-negative integers that contains 0. A T-coloring of G is an assignment of a non-negative integer f(x) to each vertex x of G such that |f(x)−f(y)|∉T whenever xyE(G). The edge span of a T-coloring−f is the maximum value of |f(x) f(y)| over all edges xy, and the T-edge span of a graph G is the minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of the dth power C d n of the n-cycle C n for T={0, 1, 2, …, k−1}. In particular, we find the exact value of the T-edge span of C n d for n≡0 or (mod d+1), and lower and upper bounds for other cases. Received: May 13, 1996 Revised: December 8, 1997  相似文献   

7.
A lower bound on the total signed domination numbers of graphs   总被引:4,自引:0,他引:4  
Let G be a finite connected simple graph with a vertex set V(G)and an edge set E(G). A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1}.The weight of f is W(f)=∑_(x∈V)(G)∪E(G))f(X).For an element x∈V(G)∪E(G),we define f[x]=∑_(y∈NT[x])f(y).A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1} such that f[x]≥1 for all x∈V(G)∪E(G).The total signed domination numberγ_s~*(G)of G is the minimum weight of a total signed domination function on G. In this paper,we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values ofγ_s~*(G)when G is C_n and P_n.  相似文献   

8.
For an additive subgroup G of a field F of characteristic zero, a Lie algebra B(G) of Block type is defined with basis {Lα,i| α∈G, i∈Z+} and relations [Lα,i, Lβ,j] = (β-α)Lα+β,i+j+(αj-βi)Lα+β,Lα+β,i+j-1.It is proved that an irreducible highest weight B(Z)-module is quasifinite if and only if it is a proper quotient of a Verma module. Furthermore, for a total order λ on G and any ∧∈B(G)0^*(the dual space of B(G)0 = span{L0,i|i∈Z+}), a Verma B(G)-module M(∧,λ) is defined, and the irreducibility of M(A,λ) is completely determined.  相似文献   

9.
Let G be a finite p-group, where p is a prime number, and aG. Denote by Cl(a) = {gag−1| gG} the conjugacy class of a in G. Assume that |Cl(a)| = pn. Then Cl(a) Cl(a−1) = {xy | x ∈ Cl(a), yCl(a−1)} is the union of at least n(p − 1) + 1 distinct conjugacy classes of G. Received: 16 December 2004  相似文献   

10.
On the adjacent-vertex-strongly-distinguishing total coloring of graphs   总被引:6,自引:0,他引:6  
For any vertex u∈V(G), let T_N(U)={u}∪{uv|uv∈E(G), v∈v(G)}∪{v∈v(G)|uv∈E(G)}and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C_f(u)={f(x)|x∈TN(U)}. For any two adjacent vertices x and y of V(G)such that C_f(x)≠C_f(y), we refer to f as a k-avsdt-coloring of G("avsdt"is the abbreviation of"adjacent-vertex-strongly- distinguishing total"). The avsdt-coloring number of G, denoted by X_(ast)(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We proveΔ(G) 1≤X_(ast)(G)≤Δ(G) 2 for any tree or unique cycle graph G.  相似文献   

11.
Let A and B be uniform algebras. Suppose that α ≠ 0 and A 1A. Let ρ, τ: A 1A and S, T: A 1B be mappings. Suppose that ρ(A 1), τ(A 1) and S(A 1), T(A 1) are closed under multiplications and contain expA and expB, respectively. If ‖S(f)T(g) − α = ‖ρ(f)τ(g) − α for all f, gA 1, S(e 1)−1S(A 1) and S(e 1) ∈ T(A 1) for some e 1A 1 with ρ(e 1) = 1, then there exists a real-algebra isomorphism $ \tilde S $ \tilde S : AB such that $ \tilde S $ \tilde S (ρ(f)) = S(e 1)−1 S(f) for every fA 1. We also give some applications of this result.  相似文献   

12.
Let G be a finite group and X be a G-space. For a map f: X → ℝ m , the partial coincidence set A(f, k), k ≤ |G|, is the set of points xX such that there exist k elements g 1,…, g k of the group G, for which f(g 1 x) = ⋅⋅⋅ = f(g k x) holds. We prove that the partial coincidence set is nonempty for G = ℤ p n under some additional assumptions. Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 13, No. 8, pp. 61–67, 2007.  相似文献   

13.
Let S° be an inverse semigroup with semilattice biordered set E° of idempotents and E a weakly inverse biordered set with a subsemilattice Ep = { e ∈ E | arbieary f ∈ E, S(f , e) loheain in w(e)} isomorphic to E° by θ:Ep→E°. In this paper, it is proved that if arbieary f, g ∈E, f ←→ g→→ f°θD^s° g°θand there exists a mapping φ from Ep into the symmetric weakly inverse semigroup P J(E∪ S°) satisfying six appropriate conditions, then a weakly inverse semigroup ∑ can be constructed in P J(S°), called the weakly inverse hull of a weakly inverse system (S°, E, θ, φ) with I(∑) ≌ S°, E(∑) ∽- E. Conversely, every weakly inverse semigroup can be constructed in this way. Furthermore, a sufficient and necessary condition for two weakly inverse hulls to be isomorphic is also given.  相似文献   

14.
The paper is devoted to the study of a linguistic dynamical system of dimension n ≥ 2 over an arbitrary commutative ring K, i.e., a family F of nonlinear polynomial maps f α : K n K n depending on “time” α ∈ {K − 0} such that f α −1 = f −αM, the relation f α1 (x) = f α2 (x) for some x ∈ Kn implies α1 = α2, and each map f α has no invariant points. The neighborhood {f α (υ)∣α ∈ K − {0}} of an element v determines the graph Γ(F) of the dynamical system on the vertex set Kn. We refer to F as a linguistic dynamical system of rank d ≥ 1 if for each string a = (α1, υ, α2), s ≤ d, where αi + αi+1 is a nonzero divisor for i = 1, υ, d − 1, the vertices υ a = f α1 × ⋯ × f αs (υ) in the graph are connected by a unique path. For each commutative ring K and each even integer n ≠= 0 mod 3, there is a family of linguistic dynamical systems Ln(K) of rank d ≥ 1/3n. Let L(n, K) be the graph of the dynamical system Ln(q). If K = Fq, the graphs L(n, Fq) form a new family of graphs of large girth. The projective limit L(K) of L(n, K), n → ∞, is well defined for each commutative ring K; in the case of an integral domain K, the graph L(K) is a forest. If K has zero divisors, then the girth of K drops to 4. We introduce some other families of graphs of large girth related to the dynamical systems Ln(q) in the case of even q. The dynamical systems and related graphs can be used for the development of symmetric or asymmetric cryptographic algorithms. These graphs allow us to establish the best known upper bounds on the minimal order of regular graphs without cycles of length 4n, with odd n ≥ 3. Bibliography: 42 titles. Published in Zapiski Nauchnykh Seminarov POMI, Vol. 326, 2005, pp. 214–234.  相似文献   

15.
Paul Wollan 《Combinatorica》2011,31(1):95-126
We prove that for all positive integers k, there exists an integer N =N(k) such that the following holds. Let G be a graph and let Γ an abelian group with no element of order two. Let γ: E(G)→Γ be a function from the edges of G to the elements of Γ. A non-zero cycle is a cycle C such that Σ eE(C) γ(e) ≠ 0 where 0 is the identity element of Γ. Then G either contains k vertex disjoint non-zero cycles or there exists a set XV (G) with |X| ≤N(k) such that G−X contains no non-zero cycle.  相似文献   

16.
Let a1,a2, . . . ,am ∈ ℝ2, 2≤fC([0,∞)), giC([0,∞)) be such that 0≤gi(t)≤2 on [0,∞) ∀i=1, . . . ,m. For any p>1, we prove the existence and uniqueness of solutions of the equation ut=Δ(logu), u>0, in satisfying and logu(x,t)/log|x|→−f(t) as |x|→∞, logu(x,t)/log|xai|→−gi(t) as |xai|→0, uniformly on every compact subset of (0,T) for any i=1, . . . ,m under a mild assumption on u0 where We also obtain similar existence and uniqueness of solutions of the above equation in bounded smooth convex domains of ℝ2 with prescribed singularities at a finite number of points in the domain.  相似文献   

17.
Consider the Cauchy problem ∂u(x, t)/∂t = ℋu(x, t) (x∈ℤd, t≥ 0) with initial condition u(x, 0) ≡ 1 and with ℋ the Anderson Hamiltonian ℋ = κΔ + ξ. Here Δ is the discrete Laplacian, κ∈ (0, ∞) is a diffusion constant, and ξ = {ξ(x): x∈ℤ d } is an i.i.d.random field taking values in ℝ. G?rtner and Molchanov (1990) have shown that if the law of ξ(0) is nondegenerate, then the solution u is asymptotically intermittent. In the present paper we study the structure of the intermittent peaks for the special case where the law of ξ(0) is (in the vicinity of) the double exponential Prob(ξ(0) > s) = exp[−e s ] (s∈ℝ). Here θ∈ (0, ∞) is a parameter that can be thought of as measuring the degree of disorder in the ξ-field. Our main result is that, for fixed x, y∈ℤ d and t→∈, the correlation coefficient of u(x, t) and u(y, t) converges to ∥w ρ−2 ℓ2Σz ∈ℤd w ρ(x+z)w ρ(y+z). In this expression, ρ = θ/κ while w ρ:ℤd→ℝ+ is given by w ρ = (v ρ) d with v ρ: ℤ→ℝ+ the unique centered ground state (i.e., the solution in ℓ2(ℤ) with minimal l 2-norm) of the 1-dimensional nonlinear equation Δv + 2ρv log v = 0. The uniqueness of the ground state is actually proved only for large ρ, but is conjectured to hold for any ρ∈ (0, ∞). empty It turns out that if the right tail of the law of ξ(0) is thicker (or thinner) than the double exponential, then the correlation coefficient of u(x, t) and u(y, t) converges to δ x, y (resp.the constant function 1). Thus, the double exponential family is the critical class exhibiting a nondegenerate correlation structure. Received: 5 March 1997 / Revised version: 21 September 1998  相似文献   

18.
Entropy bounds for perfect matchings and Hamiltonian cycles   总被引:1,自引:1,他引:0  
For a graph G = (V,E) and x: E → ℜ+ satisfying Σ eυ x e = 1 for each υV, set h(x) = Σ e x e log(1/x e ) (with log = log2). We show that for any n-vertex G, random (not necessarily uniform) perfect matching f satisfying a mild technical condition, and x e =Pr(ef),
(where H is binary entropy). This implies a similar bound for random Hamiltonian cycles. Specializing these bounds completes a proof, begun in [6], of a quite precise determination of the numbers of perfect matchings and Hamiltonian cycles in Dirac graphs (graphs with minimum degree at least n/2) in terms of h(G):=maxΣ e x e log(1/x e ) (the maximum over x as above). For instance, for the number, Ψ(G), of Hamiltonian cycles in such a G, we have
. Supported by NSF grant DMS0200856.  相似文献   

19.
Highest weight representations of a Lie algebra of Block type   总被引:2,自引:0,他引:2  
For a field F of characteristic zero and an additive subgroup G of F, a Lie algebra B(G) of the Block type is defined with the basis {Lα,i, c|α∈G, -1≤i∈Z} and the relations [Lα,i,Lβ,j] = ((i 1)β- (j 1)α)Lα β,i j αδα,-βδi j,-2c,[c, Lα,i] = 0. Given a total order (?) on G compatible with its group structure, and anyα∈B(G)0*, a Verma B(G)-module M(A, (?)) is defined, and the irreducibility of M(A,(?)) is completely determined. Furthermore, it is proved that an irreducible highest weight B(Z )-module is quasifinite if and only if it is a proper quotient of a Verma module.  相似文献   

20.
Of concern are semigroups of linear norm one operators on Hilbert space of the form (discrete case)T={T n /n=0,1,2,...} or (continuous case)T={T(t)/t=≥0}. Using ergodic theory and Hilbert-Schmidt operators, the Cesàro limits (asn→∞) of |〈T n f,f〉|2, |〈T (n)f,f〉|2 are computed (withn∈ℤ+ orn∈ℤ+). Specializing the Hilbert space to beL 2(T,μ) (discrete case) orL 2(ℝ,μ) (continuous case) where μ is a Borel probability measure on the circle group or the line, the Cesàro limit of (asn→±∞, with,n∈ℤ orn∈ℝ) is obtained and interpreted. Extensions toT M , and ℝ M are given. Finally, we discuss recent operator theoretic extensions from a Hilbert to a Banach space context. Partially supported by an NSF grant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号