首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 88 毫秒
1.
在Jeismanowicz猜想的基础上,利用初等方法证明了对任意的正整数n, Diophantine方程(44n)x+(117n)y=(125n)z 仅有正整数解(x, y, z)=(2,2,2)。  相似文献   

2.
程智  孙翠芳  杜先能 《应用数学》2013,26(1):129-133
设a,b,c是满足条件a2+ b2=c2的两两互素的正整数.Jesmanowicz于1956年猜想对于任意给定的正整数n,方程(an)x+(bn)y=(cn)z仅有解(x,y,z)=(2,2,2).本文证明了方程(20n)x+(21n)y=(29n)z有唯一解(x,y,z)=(2,2,2).  相似文献   

3.
运用同余及元素阶的性质,证明对任意正整数n,丢番图方程(12n)x+(35n)y=(37n)z仅有正整数解(x,y,z)=(2,2,2).  相似文献   

4.
设b是大于3的正奇数.运用初等方法讨论了方程(bn)x+(2n)x+(2n)y=((b+2)n)y=((b+2)n)z适合(x,y,z)≠(1,1,1)的正整数解(x,y,z,n).证明了:i)对于任何给定的正整数N,存在无穷多个b可使该方程有满足min{x,y,z}≥N的正整数解(x,y,z,n);ii)对于任何给定的b,该方程仅有有限多组正整数解(x,y,z,n)满足y>z=x.  相似文献   

5.
关于数论函数σ(n)的一个注记   总被引:2,自引:0,他引:2  
对于两个不相同的正整数m和n,如果满足σ(m)=σ(n)=m n,则称之为一对亲和数,这里σ(n)=∑d|nd.本文给出了f(x,y)=x2x y2x(x>y≥1,(x,y)=1)不与任何正整数构成亲和数对的结论,这里x,y具有不同的奇偶性,即,关于z的方程σ(f,(x,y))=σ(z)=f(x,y) z不存在正整数解.  相似文献   

6.
设(a,b,c)是一组满足a~2+b~2=c~2,gcd(a,b)=1,2|b的本原商高数,运用初等数论方法讨论方程(an)~x+(bn)~y=(cn)~z正整数解(x,y,z,n),证明了:当(a,b,c)=(143,24,145)时,方程仅有正整数解(x,y,z,n)=(2,2,2,m),其中m是任意正整数,上述结果说明此时Jesmanowicz猜想成立.  相似文献   

7.
设a,b,c为两两互素的正整数,满足a^2+b^2=c^2.1956年,Jesmanowicz猜想:对任意的正整数n,丢番图方程(an)^x+(bn)^y=(cn)^x仅有正整数解(x,y,z)=(2,2,2).本文对(a,b,c)=(143,24,145)的特殊情形,证明了该猜想是正确的.  相似文献   

8.
对于两个不相同的正整数$m$和$n$, 如果满足$\sigma(m)=\sigma(n)=m+n$, 则称之为一对亲和数, 这里$\sigma(n)=\sum_{d|n}d$.本文给出了$f(x,y)=x^{2^{x}}+y^{2^{x}}(x>y\geq{1},(x,y)=1)$不与任何正整数构成亲和数对的结论, 这里$x$,$y$具有不同的奇偶性, 即, 关于$z$的方程$\sigma(f(x,y))=\sigma(z)=f(x,y)+z$不存在正整数解.  相似文献   

9.
设n是正整数.本文证明了:方程(n+1)+(n+2)y=nz仅当n=3时有正整数解(y,z)=(1,2).  相似文献   

10.
设r是正整数.本文运用初等数论方法证明了方程((2~(r+1)+1)n)~x+((2~(2r+1)+2~(r+1)n)~y=((2~(2r+1)+2~(r+1)+1)n)~2适合(x,y,z)≠(2,2,2)以及n1的正整数解(x,y,z,n)都满足xzy特别是当2~(r+1)是素数时,该方程仅有正整数解(x,y,z,n)=(2,2,2,t),其中t是任意正整数,即此时Jemanowicz猜想成立.  相似文献   

11.
利用三角函数幂公式、L′Hospital法则、分部积分公式,得到含有三角函数的第一类广义积分integral from n=0 to ∞(((sin(θ_x))/x)~ndx)的计算公式,其中n≥1且θ≠0.  相似文献   

12.
We present an algorithm for linear programming which requires O(((m+n)n 2+(m+n)1.5 n)L) arithmetic operations wherem is the number of constraints, andn is the number of variables. Each operation is performed to a precision of O(L) bits.L is bounded by the number of bits in the input. The worst-case running time of the algorithm is better than that of Karmarkar's algorithm by a factor of .  相似文献   

13.
14.
15.
16.
In this paper, we discuss the pairs (f, h) of arithmetical functions satisfying the functional equation in the title, whereF is the product off andh under the Dirichlet convolution; that is,F(n) = Σ d|n ?(d)h(n/d) andS(m n) = Σd|(m, n) ?(d)h(n/d). The well-known Hölder's identity is a special case of this functional equation (?(n) =n, h(n) = μ(n)). We also generalize the functional equation in the title to any arbitrary regular arithmetical convolution and discuss the pairs of solutions (f, h) of the generalized functional equation and pose some problems relating to the characterization of all pairs of solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号