首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
研究一类害虫管理SI传染病模型,考虑脉冲投放病虫和人工捕杀相结合,得到系统的灭绝周期解,给出此周期解的全局吸引性,并获得了系统一致持续生存的条件.给出了害虫管理综合防治策略.  相似文献   

2.
讨论了与害虫管理相关的一类捕食者具脉冲扰动与相互干扰的阶段结构时滞捕食-食饵模型,得到了害虫灭绝周期解的全局吸引和系统持久的充分条件,也证明了系统的所有解的一致完全有界.我们的结论为现实的害虫管理提供了一定的理论依据.  相似文献   

3.
讨论了与害虫治理相关的一类捕食者具脉冲扰动与食饵具有化学控制的阶段结构时滞捕食-食饵模型,得到了害虫灭绝周期解的全局吸引和系统持久的充分条件,也证明了系统的所有解的一致完全有界.得出的结论为现实的害虫治理提供了可靠的策略依据.  相似文献   

4.
研究一类状态依赖脉冲控制的害虫管理数学模型,当害虫的数量达到一定的临界值时,通过释放天敌和喷洒农药使得害虫的数量不超过经济危害水平.首先利用几何分析和后继函数方法得到了系统阶1周期解的存在性,进而运用类Poincare准则证明系统阶1周期解是轨道渐近稳定的.结论表明在一定的条件下,总能将害虫控制在经济危害水平以内,从而人们在农业生产过程中能够获得最大收益.证明系统存在阶1周期解的方法可推广到其它状态依赖脉冲反馈模型中.  相似文献   

5.
本文讨论了与生物资源管理相关的食饵具脉冲扰动与捕食者具连续收获的时滞捕食-食饵模型,得到了捕食者灭绝周期解的全局吸引和系统持久的充分条件.也证明了系统的所有解的一致完全有界.我们的结论为现实的生物资源管理提供了可靠的策略依据,也丰富了脉冲时滞微分方程的理论.  相似文献   

6.
研究一类食饵(害虫)具有阶段结构并带有流行病、捕食者(天敌)具脉冲放养和时滞的捕食-食饵模型,得到了害虫灭绝周期解全局吸引的充分条件,以及当脉冲周期在一定范围内,易感害虫种群的密度可以控制在经济危害水平E(EIL)之下.所得结论将为现实的害虫管理提供一定的理论依据,数值分析也进一步说明系统的动力学性质.  相似文献   

7.
讨论了与可再生生物资源管理相关的食饵具脉冲扰动与捕食者具连续收获的阶段结构时滞捕食-食饵模型,得到了捕食者灭绝周期解的全局吸引和系统持久的充分条件.也证明了系统的所有解的一致完全有界.结论为现实的可再生生物资源管理提供了可靠的策略依据.  相似文献   

8.
具饱和传染率的脉冲免疫接种SIRS模型   总被引:1,自引:0,他引:1  
研究了具饱和传染率的脉冲免疫接种SIRS模型的一致持续生存和周期解,得到了无病周期解全局渐近稳定的充分条件和系统一致持续生存的充分条件,并应用分支理论得到了正周期解存在的分支参数.  相似文献   

9.
研究了一个关于害虫防治的有脉冲效应以及年龄结构和时滞的捕食-被捕食模型,得到了害虫根除的周期解全局吸引以及系统持久的充分条件,同时证明了系统所有的解是一致最终有界的.这些结果能为害虫防治的实际操作提供一定的理论依据.  相似文献   

10.
基于害虫的生物控制策略,分别利用Floquet乘子理论及脉冲比较定理,研究了一类具有脉冲效应的一个捕食者-两个食饵模型并进行了分析,得到害虫根除周期解的渐近稳定与系统持续生存条件.  相似文献   

11.
In this work, we consider a pest management SI model with impulsive release of infective pests and spraying pesticides. We prove that all solutions of the investigated system are uniformly ultimately bounded and the pest-extinction periodic solution is globally asymptotically stable when some condition is satisfied. We also obtain the permanent condition of the system. It is concluded that the approach of combining impulsive release of infective pests with impulsive spraying pesticides provides reliable tactic basis for the practical pest management.  相似文献   

12.
基于喷洒杀虫剂及释放病虫的脉冲控制害虫模型   总被引:1,自引:1,他引:0  
基于喷洒杀虫剂及释放病虫的综合控制害虫策略,建立了具有脉冲控制的微分方程模型.利用脉冲微分方程的F loquet理论、比较定理,证明了害虫灭绝周期解的全局渐近稳定性与系统的持久性.  相似文献   

13.
In this work, we consider a pest management SI model with concerns about releasing of infective pests and spraying pesticides at different fixed moments. We prove that all solutions the investigated system are uniformly ultimately bounded, and there exists globally asymptotic stable pest‐extinction boundary periodic solution when certain condition is satisfied. Furthermore, the permanent condition of the system is also obtained. It is concluded that the approach, which combines releasing infective pests with spraying pesticides in different fixed moments, provides reliable tactic basis for the practical pest management. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
An impulsive SI model with Monod-Haldane functional response for pest control is proposed and investigated. First, we have proved that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. Otherwise, the above system can be permanent. Then, influences of impulsive perturbation including impulse period, the time of spraying pesticide and the quantity of releasing infective pests on the above system have been studied. Moreover, numerical simulations show that the system has rich dynamical behaviors. Finally, it is concluded that the approach of combining impulsive infective releasing with impulsive pesticide spraying is more effective than the classical one if the chemical control is adopted rationally.  相似文献   

15.
From a biological pest management standpoint, epidemic diseases models have become important tools in control of pest populations. This paper deals with an impulsive delay epidemic disease model with stage-structure and a general form of the incidence rate concerning pest control strategy, in which the pest population is subdivided into three subgroups: pest eggs, susceptible pests, infectious pests that do not attack crops. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact periodic susceptible pest-eradication solution of the system and observe that the susceptible pest-eradication periodic solution is globally attractive, provided that the amount of infective pests released periodically is larger than some critical value. When the amount of infective pests released is less than another critical value, the system is shown to be permanent, which implies that the trivial susceptible pest-eradication solution loses its attractivity. Our results indicate that besides the release amount of infective pests, the incidence rate, time delay and impulsive period can have great effects on the dynamics of our system.  相似文献   

16.
In this paper, we propose a model with impulsive control of epidemics for pest management. By using Floquet's theorem, small‐amplitude perturbation skills and comparison theorem, we show that there exists a globally asymptotically stable susceptible pest‐eradication periodic solution when the release amount of infective pests is larger than some critical value. However, when the amount of infective pests released is less than this critical value, the system is shown to be permanent, which implies that the trivial periodic susceptible pest‐eradication solution loses its stability. Further, the existence of a positive periodic endemic solution and other rich dynamics are also studied by numerical simulation. Therefore, we can use the amount of release of infective pests to control susceptible pests at desirable low levels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Pulse-like pest management actions such as spraying pesticides and killing a pest instantly and the release of natural enemies at critical times can be modelled with impulsive differential equations. In practice, many pesticides have long-term residual effects and, also, both pest and natural enemy populations may have delayed responses to pesticide applications. In order to evaluate the effects of the duration of the residual effectiveness of pesticides and of delayed responses to pesticides on a pest management strategy, we developed novel mathematical models. These combine piecewise-continuous periodic functions for chemical control with pulse actions for releasing natural enemies in terms of fixed pulse-type actions and unfixed pulse-type actions. For the fixed pulse-type model, the stability threshold conditions for the pest eradication periodic solution and permanence of the model are derived, and the effects of key parameters including killing efficiency rate, decay rate, delayed response rate, number of pesticide applications and number of natural enemy releases on the threshold values are discussed in detail. The results indicate that there exists an optimal releasing period or an optimal number of pesticide applications which maximizes the threshold value. For unfixed pulse-type models, the effects of the killing efficiency rate, decay rate and delayed response rate on the pest outbreak period, and the frequency of control actions are also investigated numerically.  相似文献   

18.
In this paper, we consider an integrated pest management model with disease in the pest and a stage structure for its natural predator, which is subject to impulsive and periodic controls. A nonlinear incidence rate expressed in an abstract form, is used to describe the propagation of the disease, which is spread through the periodic release of infective pests, the functional response of the mature predator also being given in an abstract, unspecified form. Sufficient conditions for the local and global stability of the susceptible pest-eradication periodic solution are found by means of Floquet theory and comparison methods, the permanence of the system also being discussed. These stability conditions are shown to be biologically significant, being reformulated as balance conditions for the susceptible pest class.  相似文献   

19.
In this paper, the bifurcation of nontrivial periodic solutions for an impulsively perturbed system of ordinary differential equations which models an integrated pest management strategy is studied by means of a fixed point approach. A biological control, consisting in the periodic release of infective pests, and a chemical control, consisting in pesticide spraying, are employed to maintain susceptible pests below an acceptable level. It is assumed that the biological and chemical control act with the same periodicity, but not in the same time. It is then shown that if the constant amount of infective pests released each time reaches a certain threshold value, then the trivial susceptible pest-eradication periodic solution loses its stability, which is transferred to a newly emerging nontrivial periodic solution.  相似文献   

20.
非线性脉冲状态依赖捕食-被捕食模型的定性分析   总被引:1,自引:1,他引:0  
由于资源的有限性以及害虫群体对杀虫剂的抗性发展等因素,使得杀虫剂对害虫的杀死率具有饱和效应.因此,当害虫的数量达到经济阈值时, 杀虫剂对害虫的杀死率与经济阈值有关.为了刻画上述饱和效应,建立了一类非线性脉冲状态依赖捕食被捕食模型.利用Lambert W函数和脉冲半动力系统的相关技巧,分析了模型阶1正周期解的存在性和稳定性, 得到了相应的充分条件.进而讨论了非线性脉冲与线性脉冲对阶1周期解存在性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号