首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From a biological pest management standpoint, epidemic diseases models have become important tools in control of pest populations. This paper deals with an impulsive delay epidemic disease model with stage-structure and a general form of the incidence rate concerning pest control strategy, in which the pest population is subdivided into three subgroups: pest eggs, susceptible pests, infectious pests that do not attack crops. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact periodic susceptible pest-eradication solution of the system and observe that the susceptible pest-eradication periodic solution is globally attractive, provided that the amount of infective pests released periodically is larger than some critical value. When the amount of infective pests released is less than another critical value, the system is shown to be permanent, which implies that the trivial susceptible pest-eradication solution loses its attractivity. Our results indicate that besides the release amount of infective pests, the incidence rate, time delay and impulsive period can have great effects on the dynamics of our system.  相似文献   

2.
基于喷洒杀虫剂及释放病虫的脉冲控制害虫模型   总被引:1,自引:1,他引:0  
基于喷洒杀虫剂及释放病虫的综合控制害虫策略,建立了具有脉冲控制的微分方程模型.利用脉冲微分方程的F loquet理论、比较定理,证明了害虫灭绝周期解的全局渐近稳定性与系统的持久性.  相似文献   

3.
In this paper, the bifurcation of nontrivial periodic solutions for an impulsively perturbed system of ordinary differential equations which models an integrated pest management strategy is studied by means of a fixed point approach. A biological control, consisting in the periodic release of infective pests, and a chemical control, consisting in pesticide spraying, are employed to maintain susceptible pests below an acceptable level. It is assumed that the biological and chemical control act with the same periodicity, but not in the same time. It is then shown that if the constant amount of infective pests released each time reaches a certain threshold value, then the trivial susceptible pest-eradication periodic solution loses its stability, which is transferred to a newly emerging nontrivial periodic solution.  相似文献   

4.
In pest control, there are only a few papers on mathematical models of the dynamics of microbial diseases. In this paper a model concerning biologically-based impulsive control strategy for pest control is formulated and analyzed. The paper shows that there exists a globally stable susceptible pest eradication periodic solution when the impulsive period is less than some critical value. Further, the conditions for the permanence of the system are given. In addition, there exists a unique positive periodic solution via bifurcation theory, which implies both the susceptible pest and the infective pest populations oscillate with a positive amplitude. In this case, the susceptible pest population is infected to the maximum extent while the infective pest population has little effect on the crops. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamic, which implies that this model has more complex dynamics, including period-doubling bifurcation, chaos and strange attractors.  相似文献   

5.
In this work, we consider a pest management SI model with concerns about releasing of infective pests and spraying pesticides at different fixed moments. We prove that all solutions the investigated system are uniformly ultimately bounded, and there exists globally asymptotic stable pest‐extinction boundary periodic solution when certain condition is satisfied. Furthermore, the permanent condition of the system is also obtained. It is concluded that the approach, which combines releasing infective pests with spraying pesticides in different fixed moments, provides reliable tactic basis for the practical pest management. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, we consider a pest management SI model with impulsive release of infective pests and spraying pesticides. We prove that all solutions of the investigated system are uniformly ultimately bounded and the pest-extinction periodic solution is globally asymptotically stable when some condition is satisfied. We also obtain the permanent condition of the system. It is concluded that the approach of combining impulsive release of infective pests with impulsive spraying pesticides provides reliable tactic basis for the practical pest management.  相似文献   

7.
In this paper, by using pollution model and impulsive delay differential equation, we investigate the dynamics of a pest control model with age structure for pest by introducing a constant periodic pesticide input and releasing natural enemies at different fixed moment. We assume only the pests are affected by pesticide. We show that there exists a global attractive pest-extinction periodic solution when the periodic natural enemies release amount μ1 and pesticide input amount μ2 are larger than some critical value. Further, the condition for the permanence of the system is also given. By numerical analyses, we also show that constant maturation time delay, pulse pesticide input and pulse releasing of the natural enemies can bring obvious effects on the dynamics of system. We believe that the results will provide reliable tactic basis for the practical pest management.  相似文献   

8.
According to biological strategy for pest control, we investigate the dynamic behavior of a pest management SEI model with saturation incidence concerning impulsive control strategy-periodic releasing infected pests at fixed times. We prove that all solutions of the system are uniformly ultimately bounded and there exists a globally asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. When the impulsive period is larger than some critical value, the stability of the pest-eradication periodic solution is lost; the system is uniformly permanent. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by period-doubling cascade, symmetry-breaking pitchfork bifurcation, quasi-periodic oscillate, chaos, and non-unique dynamics.  相似文献   

9.
In this paper, we investigate the pest control model with population dispersal in two patches and impulsive effect. By exploiting the Floquet theory of impulsive differential equation and small amplitude perturbation skills, we can obtain that the susceptible pest eradication periodic solution is globally asymptotically stable if the impulsive periodic τ is less than the critical value τ0 . Further, we also prove that the system is permanent when the impulsive periodic τ is larger than the critical value τ0. Hence, in order to drive the susceptible pest to extinction, we can take impulsive control strategy such that τ < τ0 according to the effect of the viruses on the environment and the cost of the releasing pest infected in a laboratory. Finally, numerical simulations validate the obtained theoretical results for the pest control model with population dispersal in two patches and impulsive effect.  相似文献   

10.
An impulsive SI model with Monod-Haldane functional response for pest control is proposed and investigated. First, we have proved that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. Otherwise, the above system can be permanent. Then, influences of impulsive perturbation including impulse period, the time of spraying pesticide and the quantity of releasing infective pests on the above system have been studied. Moreover, numerical simulations show that the system has rich dynamical behaviors. Finally, it is concluded that the approach of combining impulsive infective releasing with impulsive pesticide spraying is more effective than the classical one if the chemical control is adopted rationally.  相似文献   

11.
In this paper, we consider an integrated pest management model with disease in the pest and a stage structure for its natural predator, which is subject to impulsive and periodic controls. A nonlinear incidence rate expressed in an abstract form, is used to describe the propagation of the disease, which is spread through the periodic release of infective pests, the functional response of the mature predator also being given in an abstract, unspecified form. Sufficient conditions for the local and global stability of the susceptible pest-eradication periodic solution are found by means of Floquet theory and comparison methods, the permanence of the system also being discussed. These stability conditions are shown to be biologically significant, being reformulated as balance conditions for the susceptible pest class.  相似文献   

12.
In this paper, the dynamic behaviors of a two-prey two-predator system with impulsive effect on the predator of fixed moment are investigated. By applying the Floquet theory of liner periodic impulsive equation, we show that there exists a globally asymptotically stable two-prey eradication periodic solution when the impulsive period is less than some critical value. Further, we prove that the system is permanent if the impulsive period is large than some critical value, and meanwhile the conditions for the extinction of one of the two prey and permanence of the remaining three species are given. Finally, numerical simulation shows that there exists a stable positive periodic solution with a maximum value no larger than a given level. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels.  相似文献   

13.
In this paper, an impulsive predator–prey model with disease in the prey is investigated for the purpose of integrated pest management. In the first part of the main results, we get the sufficient condition for the global stability of the susceptible pest-eradication periodic solution. This means if the release amount of infective prey and predator satisfy the condition, then the pest will be doomed. In the second part of the main results, we also get the sufficient condition for the permanence of the system. This means if the release amount of infective prey and predator satisfy the condition, then the prey and the predator will coexist. In the last section, we interpret our mathematical results. We also point out some possible future work.  相似文献   

14.
In this paper, a predator–prey model with disease in the prey is constructed and investigated for the purpose of integrated pest management. In the first part of the main results, the sufficient condition for the global stability of the susceptible pest-eradication periodic solution is obtained, which means if the release amount of infective prey and predator satisfy the condition, then the pest will be controlled. The sufficient condition for the permanence of the system is also obtained subsequently, which means if the release amount of infective prey and predator satisfy the condition, then the prey and the predator will coexist. At last, we interpret our mathematical results.  相似文献   

15.
研究一类害虫管理SI传染病模型,考虑脉冲投放病虫和人工捕杀相结合,得到系统的灭绝周期解,给出此周期解的全局吸引性,并获得了系统一致持续生存的条件.给出了害虫管理综合防治策略.  相似文献   

16.
In an ecosystem multiple prey species often share a common predator and the interactions between the preys are neutral. In view of these facts and based on a multiple species prey–predator system with Holling IV and II functional responses, an impulsive differential equation to model the process of periodically releasing natural enemies and spraying pesticides at different fixed times for pest control is proposed and investigated. It is proved that there exists a locally asymptotically stable pest-eradication periodic solution under the assumption that the impulsive period is less than some critical value (or the release amount of the predator is greater than another critical value). Permanence conditions are established when the impulsive period is greater than another critical value (or the release amount of the predator is less than some critical value). Numerical results show that the system we consider has more complex dynamics including period solution, quasi-periodic oscillation, chaos, intermittency and crises.  相似文献   

17.
Based on spraying pesticide and introducing infected pest and natural enemy for pest control, an SI ecological epidemic model with different frequencies of pesticide applications and infected pests and natural enemy releases is proposed and studied. With spraying either more or less frequently than the releases, the threshold condition of existence and global attractiveness of susceptible pest extinction periodic solution is obtained. We investigate the effects of the pest control tactics on the threshold conditions. We also show that the system has rich dynamics including period-doubling bifurcations and chaos as the release period increases, which implies that the presence of impulsive intervention makes the dynamic behavior more complex. Finally, to see how the pesticide applications can be reduced, we develop a model involving periodic releases of natural enemies with chemical control applied only when the densities of the pest reaches the given Economic Threshold. It indicates that the hybrid method is the most effective method to control pest and the frequency of pesticide applications largely depends on the initial densities and the control tactics.  相似文献   

18.
In this paper, a prey-dependent consumption predator–prey (natural enemy-pest) model with age structure for the predators and infectious disease in the prey, is considered. Infectious pests, immature natural enemies and mature natural enemies are released impulsively. By using Floquet’s theorem, small-amplitude perturbation skills and comparison theorem, we obtain both the sufficient conditions for the global asymptotical stability of the susceptible pest-eradication periodic solution and the permanence of the system. The results provide a reliable theoretical tactics for pest management.  相似文献   

19.
In this paper, we investigate the dynamic behavior of an eco-epidemic model with impulsive control strategy. By using Floquet theorem of impulsive differential equation, we show there is a globally stable prey eradication periodic solution when the impulsive period is less than some critical value. We study the permanence of the system. Numerical simulations show that the complex dynamics of the system depends on the values of impulsive period and impulsive perturbation, for example double period, triple period solutions.  相似文献   

20.
ABSTRACT. There is a growing public concern about the ecological and evolutionary consequence of the use of genetically modified organisms. We study the impact of Bt resistant pests on genetically modified Bt crops and compare exposure of Bt plants to recessive and dominant Bt resistant invaders. To simulate pest invasion we develop a conceptual reaction‐diffusion model of the Bt crop Bt susceptible insects Bt resistant insects for both the recessive and dominant pests. We show by means of computer simulations that there is a key parameter which we define as the growth number that characterizes the insects' fitness. We also show that the Bt resistant insects' invasion can lead to inhomogeneity in plant and insect spatial distributions. The plant and insect spatial patterns resulting from the Bt resistant insects' invasion are found to be dependent on the duration of the Bt resistant insect reproduction period. We compare averaged plant biomass resulting from the invasion of the dominant insects with the averaged plant biomass resulting from the invasion of the recessive insects. As a result, we show that in contrast to the recessive insects, the dominant ones initiate destruction of the plant population if the inflow of Bt susceptible insects is more than a critical value. In this case the plant biomass decays to zero. Otherwise, the plant biomass under the invasion of both the dominant and recessive insects depends on the duration of the insect reproduction period. We conclude that under invasion of dominant Bt resistant pests, the refuge strategy which has received wide acceptance in agricultural practice may not be scientifically sound practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号