首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
溶胶-凝胶光学薄膜的激光损伤研究   总被引:11,自引:6,他引:5       下载免费PDF全文
 采用溶胶-凝胶工艺制备了SiO2与ZrO2单层介质膜,用输出波长1.06μm,脉宽15ns的电光调Q激光系统产生的强激光进行辐照实验。观察了光学薄膜经强激光辐照后的损伤情况,讨论了溶胶 凝胶光学薄膜在强激光照射下的损伤机理,提出了溶剂替换、紫外光处理、添加有机粘接剂等提高溶胶 凝胶光学薄膜激光损伤阈值的方法。  相似文献   

2.
硅光电二极管激光损伤阈值随激光脉宽的变化   总被引:4,自引:0,他引:4       下载免费PDF全文
 对飞秒激光辐照下硅光电二极管损伤阈值进行了实验测量,对从1s到60fs不同脉宽激光辐照下硅光电二极管损伤阈值进行了讨论。实验数据表明,在1s到10ns脉宽范围内损伤所需能量密度近似而非严格地与脉宽的平方根成正比。信号分析表明硅光电二极管的损伤主要由热效应造成,而60fs激光辐照下的损伤阈值为0.1J/cm2,明显偏离普通温度分布预言的趋势。  相似文献   

3.
胡蔚敏  王小军  田昌勇  杨晶  刘可  彭钦军 《强激光与粒子束》2022,34(1):011009-1-011009-8
研究了脉宽对于中红外脉冲激光带内损伤碲镉汞(HgCdTe)材料阈值的影响,使用一维自洽模型对激光辐照HgCdTe材料程中的载流子数密度,载流子对数目流,载流子对能流,载流子温度和材料晶格温度等相关参数进行仿真计算。仿真结果表明,波长2.85 μm,脉宽30 ps~10 ns单脉冲激光带内辐照HgCdTe材料的损伤阈值为200~500 mJ/cm2。其中,300 ps~3 ns脉冲激光的损伤阈值相近,均为200 mJ/cm2且低于其他脉宽激光的损伤阈值。搭建实验光路并进行相关实验验证仿真模型的正确性。实验发现,波长2.85 μm、脉宽300 ps的单脉冲激光带内辐照HgCdTe材料的损伤阈值在200 mJ/cm2左右。相同条件下,10 ns单脉冲激光带内辐照HgCdTe材料的损伤阈值约474 mJ/cm2。百皮秒脉冲激光对HgCdTe材料的损伤过程结合了热击穿和光学击穿效应,其独特的毁伤机理加剧了材料的损伤。  相似文献   

4.
采用化学气相沉积法在铜箔基底上生长单层石墨烯,利用湿化学方法将单层石墨烯转移到石英玻璃基底,获得石英基单层石墨烯样品。利用相衬显微镜和扫描电子显微镜,实验研究了单层石墨烯样品在紫外纳秒脉冲激光辐照下的损伤阈值和损伤概率,以及不同辐照通量下的典型微观结构。实验结果表明,单层石墨烯样品对550nm波长光的吸收率约为2.38%,与理论值2.3%接近。在波长为355nm、脉宽为5.8ns的条件下测得激光损伤阈值为78mJ/cm2。当辐照通量低于损伤阈值时,石墨烯样品表面有纳米碳球和碳花形成;当辐照通量等于损伤阈值时,石墨烯样品表面产生明显的多孔碳骨架烧蚀痕迹;当辐照通量高于损伤阈值时,则形成了特定的周期性折叠碳结构。  相似文献   

5.
采用化学气相沉积法在铜箔基底上生长单层石墨烯,利用湿化学方法将单层石墨烯转移到石英玻璃基底,获得石英基单层石墨烯样品。利用相衬显微镜和扫描电子显微镜,实验研究了单层石墨烯样品在紫外纳秒脉冲激光辐照下的损伤阈值和损伤概率,以及不同辐照通量下的典型微观结构。实验结果表明,单层石墨烯样品对550nm波长光的吸收率约为2.38%,与理论值2.3%接近。在波长为355nm、脉宽为5.8ns的条件下测得激光损伤阈值为78mJ/cm2。当辐照通量低于损伤阈值时,石墨烯样品表面有纳米碳球和碳花形成;当辐照通量等于损伤阈值时,石墨烯样品表面产生明显的多孔碳骨架烧蚀痕迹;当辐照通量高于损伤阈值时,则形成了特定的周期性折叠碳结构。  相似文献   

6.
采用溶胶-凝胶方法制备了ZrO2-TiO2(Ti含量为0-100 mol%)高折射率光学薄膜.借助激光动态光散射技术研究溶胶微结构.采用傅里叶变换红外光谱、原子力显微镜、薄膜光学常数分析仪、漫反射吸收光谱及强激光辐照实验,对膜层的结构、光学性能及抗激光损伤性能进行了系统表征.结果显示,溶胶-凝胶工艺可以在部分牺牲折射率的情况下,使膜层的抗激光损伤性能得到大幅度提升.随Ti含量从0mol%增加至100 mol%,膜层的平均损伤阈值呈下降趋势,当Ti含量从0mol%增加至60mol%时,平均损伤阈值从57.1 J/cm2下降到21.1 J/cm2(辐照激光波长为1053 nm,脉冲宽度为10 ns,"R/1"测试模式),当Ti含量从60mol%增加至100mol%时,平均损伤阈值变化很小.综合溶胶微结构、膜层光学性能和损伤实验结果可以推断,强激光诱导多光子吸收是引起膜层损伤的主要原因.不同配比的复合膜之间光学带隙的显著差异导致相同辐照激光情况下多光子吸收的概率发生变化,从而导致损伤阈值的规律性变化.  相似文献   

7.
 基于能带理论,利用激光与光学材料相互作用的理论模型,研究了激光辐照下材料导带自由电子数密度的变化,讨论了材料损伤阈值与激光波长、脉冲宽度、材料禁带宽度之间的关系,数值分析了激光波长和脉冲宽度对损伤阈值的影响。结果表明:当脉宽小于1 ps时,材料损伤阈值随脉宽增大而减小;当脉宽大于1 ps时,材料损伤阈值随脉宽增大而增大;激光波长为10 fs~10 ns,损伤阈值随着波长的减小而减小。  相似文献   

8.
用激光诱导击穿光谱测量铝合金的激光烧蚀阈值   总被引:1,自引:0,他引:1       下载免费PDF全文
采用正交几何配置的双波长双脉冲激光烧蚀-激光诱导击穿光谱技术准确测量了铝合金样品的激光烧蚀阈值。在烧蚀激光波长为532 nm、脉宽为12 ns并采用焦距为2 cm的非球面透镜强聚焦的条件下,得到铝合金的激光能量烧蚀阈值为48 J,等效的能量密度烧蚀阈值为9.8 J/cm2。该技术是一种新的激光烧蚀阈值的光谱测量手段,与传统的测量技术相比,具有高灵敏、准确、快捷和便利的特点,可以用于不同材料的激光烧蚀阈值的准确测量。  相似文献   

9.
为了改善高功率激光装置的靶面辐照均匀性, 在神光-Ⅲ原型装置的一路光上开展了结合光谱色散平滑(SSD) 和连续相位板(CPP)的高通量实验研究.实验基于调制频率9.2 GHz的体相位调制器开展, 输出的相位调制脉冲光谱展宽稳定, 脉冲波形顶部剩余调制很小. 结果表明SSD色循环数为1时预放和主放各级空间滤波器过孔顺利, 包含焦斑95%能量的通量对比度由窄带时的1.71下降到加SSD和CPP时的0.47.三倍频光脉宽1 ns, 能量1115 J时, CPP和终端光学组件元件未见损伤.通过实验解决了在高功率激光装置上采用SSD和CPP进行靶面均匀辐照的若干关键技术, 为将其应用于物理实验奠定了坚实基础.  相似文献   

10.
为研究金属Al保护、单周期及双周期增强反射膜在5ns脉宽的532nm激光器下的激光损伤阈值(LIDT),采用Comsol软件进行仿真及分析,仿真过程引入SiO2和Ta2O5的拉伸强度(膜层断裂应力)作为阈值条件,得到三种膜系的损伤阈值分别为0.318J/cm^(2)、1.325J/cm^(2)和3.382J/cm^(2),通过搭建实验平台进行激光阈值测试,采用1-on-1模式,选取50%概率的激光损伤点作为损伤阈值,测得激光功率分别为0.288J/cm^(2)、1.232J/cm^(2)及3.152J/cm^(2),与仿真结果较为接近,说明采用拉伸强度分析的该类模型更符合实际损伤,为此类膜系在实际应用中阈值的预测提供了理论基础。  相似文献   

11.
通过宽带激光脉冲放大的物理模型,以数值模拟为工具,研究分析了激光系统对不同带宽脉冲的放大能力,以及交叉弛豫时间对脉冲放大特性的影响.计算结果表明,随着带宽的增加,激光系统的输出能力逐渐降低,在其他条件相同时,宽带分别为2,5和10 nm时的输出能量比窄带输出(3000 J,1 ns脉宽)时分别减小了约2%,11%和27%;在带宽为几个纳米时完全非均匀加宽比完全均匀加宽的输出能量(3000 J,1 ns脉宽)降低了约20%;初步确定了交叉弛豫时间的范围为0—10 ns. 关键词: 激光系统 宽带激光 放大过程 交叉弛豫  相似文献   

12.
CCD在fs激光辐照下的损伤研究   总被引:7,自引:3,他引:4       下载免费PDF全文
 用脉宽为60 fs、波长为800 nm的 fs激光辐照电荷耦合器件,研究了电荷耦合器件在fs激光作用下的失效问题。实验得到fs激光作用下电荷耦合器件的失效阈值为4.22×10-3 J/cm2。这比ns激光作用下电荷耦合器件的损伤阈值低2~3个量级。对该器件进行显微观测,在光敏元上没有发现损伤,但在器件的栅极上发现了明显的激光引起的损伤痕迹。  相似文献   

13.
 采用化学法制备了HfO2介质膜,研究了热处理、紫外辐照以及Al2O3复合对HfO2介质膜激光损伤阈值的影响。采用红外光谱(FTIR)和X射线衍射仪对薄膜进行了表征,并用输出波长为1.064 μm、脉宽为10 ns的电光调Q激光系统测试薄膜的激光损伤阈值。实验结果表明:采用150 ℃左右的温度对薄膜进行热处理可以提高薄膜的激光损伤阈值,所获得的薄膜的激光损伤阈值高达42.32 J/cm2,比热处理前的激光损伤阈值提高了82%;无机材料Al2O3的适量添加能够提高薄膜的激光损伤阈值,其中HfO2与Al2O3的最佳质量配比约为95∶5;另外,对薄膜进行适当的紫外辐照也可改善HfO2 薄膜以及HfO2-Al2O3复合薄膜的抗激光损伤性能。紫外辐照对提高HfO2-Al2O3复合薄膜的激光损伤阈值效果尤为显著,辐照40 min后的激光损伤阈值达到44.33 J/cm2,比紫外辐照前的激光损伤阈值提高了90%。  相似文献   

14.
研究了飞秒激光对CCD相机的干扰和损伤效应。采用波长为800 nm,脉宽为100 fs,单脉冲能量为500μJ的脉冲激光辐照行间转移型面阵CCD相机,测量了飞秒激光对CCD相机的损伤阈值。在逐步提高到达CCD靶面能量的过程中观察点损伤、线损伤和全靶面损伤等实验现象,得到了点损伤阈值为151.2 mJ/cm2,线损伤阈值为508.2 mJ/cm2,全靶面损伤阈值为5.91 J/cm2。测量了CCD在不同损伤情况下时钟信号线间及其与地间的电阻值,通过对比CCD损伤前后的电阻值,发现线损伤和全靶面损伤时CCD垂直转移时钟线间及其与地间的电阻值明显变小。最后分析讨论了损伤部位和损伤机理。  相似文献   

15.
He-Ne散射光检测光学薄膜激光损伤阈值   总被引:3,自引:3,他引:0  
准确测定光学薄膜的激光损伤阈值可以衡量光学薄膜的抗激光损伤能力,测定损伤阈值的关键是准确地判定损伤的发生与否。建立了He-Ne散射光检测光学薄膜激光损伤阈值系统。通过测量同一样品点的He-Ne散射光能量变化来判断薄膜表面发生的损伤,并对制备的类金刚石薄膜与HfO2/SiO2反射膜进行了阈值测试。与等离子体闪光法的阈值测试结果进行比较,具有较好的一致性。分析表明:He-Ne散射光测试系统能有效地判断出激光诱导损伤,易于实现在线检测。  相似文献   

16.
多脉冲激光作用下光学薄膜损伤的累积效应   总被引:3,自引:3,他引:0  
研究了高反射膜在多脉冲激光作用下损伤的累积效应.实验中使用1064nm调Q的Nd∶YAG激光器,脉宽是12 ns,频率为10 Hz.实验发现:高反射膜的损伤阈值随辐照脉冲数增加而降低,表现出明显的累积效应.通过对损伤阈值和损伤概率以及辐照次数的统计性研究,并结合单脉冲辐照的结果,说明了存在于薄膜中微小的缺陷参与了多脉冲激光对薄膜的损伤过程,得到了制备IBS高反射膜的损伤阈值和照射次数的关系式,用Nomarski偏光显微镜观察了实验过程中样品的损伤形貌,发现是典型的缺陷损伤.  相似文献   

17.
本文报道六路亚毫微秒钕玻璃激光系统近年研究进展概况。该系统经改进、提高后其输出脉宽分四档可调;~100ps、~250ps、~400ps及~1ns;输出波形基本可控制为光滑波形或调制波形;输出光谱宽度可调区为≤1或20~30;在输出脉宽~250ps时,单路输出能量控制在5~10J;在输出脉宽~1ns时,能量控制在10~15J。最后给出该系统总体运转稳定性的结果。  相似文献   

18.
以He-Ne激光作为参考光,采用反射光能量法,测量了ns激光辐照硅光电探测器的损伤阈值,并测量了不同功率密度的强激光辐照下探测器对参考光的反射率.实验结果表明,ns激光辐照硅光电探测器的损伤阈值为4.1×106W/cm2,在探测器被强激光损伤的初期阶段,探测器对参考光的反射率下降很快,继续增加入射激光的能量,探测器对参考光的反射率下降趋于平缓.  相似文献   

19.
采用溶胶-凝胶提拉技术制备了SiO2疏水减反膜.使用Nd:YAG激光(波长为1064 nm,脉宽为7.5ns)采用"R on 1"方式对所得膜层进行了激光预处理.在预处理前后采用"1 on 1"方式考察了薄膜的激光损伤阈值的变化,使用原子力显微镜(AFM)观察了薄膜的表面形貌的变化,并使用多重分形谱(MFS)方法分析了薄膜分形结构的变化.结果 表明经过激光预处理后薄膜的抗激光损伤阈值有了明显提高,均方根表面粗糙度(Rq)稍有减小,膜面变平整,多重分形谱宽度收缩,分形区间的分布均匀性改善.这说明经过激光预处理后薄膜表面微结构趋向规整,使之能够承受更强的激光的辐照.同时也说明借助多重分形谱可以获得更多薄膜表面结构变化的信息,多重分形谱是探索强激光对光学薄膜辐照作用机理的一个十分有用的方法.  相似文献   

20.
提出一种全面分析光学薄膜损伤特性的方法,根据热传导理论与电子增殖理论建立激光辐照下多层介质膜的损伤理论模型。以HfO2/SiO2多层高反膜为例,计算红外纳秒脉冲激光作用下膜系内部的温度场、应力场以及自由电子数密度分布,对其热学特性与电子增殖特性进行综合评估后,得到不同输入条件下膜系的损伤阈值。结果表明,薄膜材料的损伤特性会受到驻波场的影响,在1064 nm波长的激光辐照下HfO2/SiO2 多层介质薄膜的热致应力损伤效应先于热熔融效应先于场效应发生,且薄膜中SiO2层发生热损伤,而薄膜并未发生场损伤,此外薄膜的损伤阈值随着激光脉宽的增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号