首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In this paper, a mathematical model with impulsive state feedback control is proposed for turbidostat system. The sufficient conditions of existence of positive order one periodic solution are obtained by using the existence criteria of periodic solution of a general planar impulsive autonomous system. It is shown that the system either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentration of microorganism and substrate. By investigating the periodic solution, the period and the initial point of the periodic solution are given. The results show that turbidostat with impulsive state feedback control tends to an order one periodic solution.  相似文献   

2.
The complex dynamics of a Holling type II prey–predator system with impulsive state feedback control is studied in both theoretical and numerical ways. The sufficient conditions for the existence and stability of semi-trivial and positive periodic solutions are obtained by using the Poincaré map and the analogue of the Poincaré criterion. The qualitative analysis shows that the positive periodic solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams, Lyapunov exponents, and phase portraits are illustrated by an example, in which the chaotic solutions appear via a cascade of period-doubling bifurcations. The superiority of the state feedback control strategy is also discussed.  相似文献   

3.
In this paper, we study dynamics of a prey-predator system under the impulsive control. Sufficient conditions of the existence and the stability of semi-trivial periodic solutions are obtained by using the analogue of the Poincaré criterion. It is shown that the positive periodic solution bifurcates from the semi-trivial periodic solution through a transcritical bifurcation. A strategy of impulsive state feedback control is suggested to ensure the persistence of two species. Furthermore, a steady positive period-2 solution bifurcates from the positive periodic solution by the flip bifurcation, and the chaotic solution is generated via a cascade of flip bifurcations. Numerical simulations are also illustrated which agree well with our theoretical analysis.  相似文献   

4.
研究具有状态反馈脉冲控制的种群互惠动力系统.首先利用微分方程几何理论和后继函数的方法得到一般系统阶1周期解的存在条件;然后研究了一类特殊系统,说明了该系统在一定条件下存在唯一的阶1周期解,并且给出了该阶1周期解轨道渐近稳定的条什,此外还探讨了该系统阶2周期解的存在性问题.  相似文献   

5.
In this paper, a chemostat model with variable yield and impulsive state feedback control is considered. We obtain sufficient conditions of the globally asymptotical stability of the system without impulsive state feedback control. We also obtain that the system with impulsive state feedback control has periodic solution of order one. Sufficient conditions for existence and stability of periodic solution of order one are given. In some cases, it is possible that the system exists periodic solution of order two. Our results show that the control measure is effective and reliable.  相似文献   

6.
According to biological strategy for pest control, we investigate the dynamic behavior of a pest management SEI model with saturation incidence concerning impulsive control strategy-periodic releasing infected pests at fixed times. We prove that all solutions of the system are uniformly ultimately bounded and there exists a globally asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. When the impulsive period is larger than some critical value, the stability of the pest-eradication periodic solution is lost; the system is uniformly permanent. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by period-doubling cascade, symmetry-breaking pitchfork bifurcation, quasi-periodic oscillate, chaos, and non-unique dynamics.  相似文献   

7.
In this paper, we propose a model with impulsive control of epidemics for pest management. By using Floquet's theorem, small‐amplitude perturbation skills and comparison theorem, we show that there exists a globally asymptotically stable susceptible pest‐eradication periodic solution when the release amount of infective pests is larger than some critical value. However, when the amount of infective pests released is less than this critical value, the system is shown to be permanent, which implies that the trivial periodic susceptible pest‐eradication solution loses its stability. Further, the existence of a positive periodic endemic solution and other rich dynamics are also studied by numerical simulation. Therefore, we can use the amount of release of infective pests to control susceptible pests at desirable low levels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A single population growth model with stage‐structured and state‐dependent impulsive control is proposed. By using the Poincar'e map and the analogue of Poincaré's criterion, we prove the existence and the stability of positive order‐1 or order‐2 periodic solution. Moreover, we show that there is no periodic solution with order greater than or equal to three. Numerical results are carried out to illustrate the feasibility of our main results and the superiority of state feedback control strategy is also discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The agricultural pests can be controlled effectively by simultaneous use (i.e., hybrid approach) of biological and chemical control methods. Also, many insect natural enemies have two major life stages, immature and mature. According to this biological background, in this paper, we propose a three tropic level plant–pest–natural enemy food chain model with stage structure in natural enemy. Moreover, impulsive releasing of natural enemies and harvesting of pests are also considered. We obtain that the system has two types of periodic solutions: plant–pest-extinction and pest-extinction using stroboscopic maps. The local stability for both periodic solutions is studied using the Floquet theory of the impulsive equation and small amplitude perturbation techniques. The sufficient conditions for the global attractivity of a pest-extinction periodic solution are determined by the comparison technique of impulsive differential equations. We analyze that the global attractivity of a pest-extinction periodic solution and permanence of the system are evidenced by a threshold limit of an impulsive period depending on pulse releasing and harvesting amounts. Finally, numerical simulations are given in support of validation of the theoretical findings.  相似文献   

10.
In this work, we consider a pest management SI model with impulsive release of infective pests and spraying pesticides. We prove that all solutions of the investigated system are uniformly ultimately bounded and the pest-extinction periodic solution is globally asymptotically stable when some condition is satisfied. We also obtain the permanent condition of the system. It is concluded that the approach of combining impulsive release of infective pests with impulsive spraying pesticides provides reliable tactic basis for the practical pest management.  相似文献   

11.
A turbidostat is an apparatus with feedback control system used to continuously culturing microorganisms. The dilution rate of the turbidostat can be regulated by the control system when the concentration of microorganism, detected by photoelectricity system or other devices, reaches a preset value. Based on the design ideas of the turbidostat, a differential equation with impulsive state feedback control is proposed for a kind of turbidostat system in this paper. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions for the existence of periodic solution of order one are obtained according to the preset value and the types of the positive equilibrium of the corresponding system without impulsive control. Furthermore, it is pointed out that the system either tends to a stable state or has a periodic solution. Finally, the theoretical results are verified by numerical simulations.  相似文献   

12.
The dynamics of a predator–prey model with impulsive state feedback control, which is described by an autonomous system with impulses, is studied. The sufficient conditions of existence and stability of semi-trivial solution and positive period-1 solution are obtained by using the Poincaré map and analogue of the Poincaré criterion. The qualitative analysis shows that the positive period-1 solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams of periodic solutions are obtained by using the Poincaré map, and it is shown that a chaotic solution is generated via a cascade of period-doubling bifurcations.  相似文献   

13.
本文研究了具有状态反馈脉冲控制的一类捕食者-食饵动力系统.我们首先利用微分方程几何理论和后继函数的方法得到该系统阶1周期解的存在性、唯一性和轨道渐近稳定性;然后说明了该系统不存在阶k(k=2,3,…)周期解,最后简单分析了相关结论在实践中的应用.  相似文献   

14.
In this paper, the homoclinic bifurcation of a predator-prey system with impulsive state feedback control is investigated. By using the geometry theory of semi-continuous dynamic systems, the existences of order-1 homoclinic cycle and order-1 periodic solution are obtained. Then the stability of order-1 periodic solution is studied. At last, an example is presented to illustrate the main results.  相似文献   

15.
In this paper, a mathematical model including the phytoplankton and zooplankton with the impulsive feedback control is presented. The sufficient conditions for the existence of the order-1 and order-2 periodic solutions are obtained by using the geometrical theory of semi-continuous dynamic system. The stability of the order-1 periodic solution is discussed by the analogue of the Poincaré criterion. Finally, our results are justified by the numerical simulations.  相似文献   

16.
In this paper, we study the problem on the existence of positive solutions for a class of impulsive periodic boundary value problems of first-order nonlinear functional differential equations. By using the fixed point theorem in cones and some analysis techniques, we present some sufficient conditions which guarantee the existence of one and multiple positive solutions for the impulsive periodic boundary value problems. Our results generalize and improve some previous results. Moreover, our results show that positive solutions for the impulsive periodic boundary value problems may be yielded completely by some proper impulsive conditions (see Example 4.1 and Remark 4.2 in Sect. 4), and also implies that proper impulsive conditions are of great significance to simulate processes, optimal control, population model and so on.  相似文献   

17.
基于喷洒杀虫剂及释放病虫的脉冲控制害虫模型   总被引:1,自引:1,他引:0  
基于喷洒杀虫剂及释放病虫的综合控制害虫策略,建立了具有脉冲控制的微分方程模型.利用脉冲微分方程的F loquet理论、比较定理,证明了害虫灭绝周期解的全局渐近稳定性与系统的持久性.  相似文献   

18.
In this paper, the dynamic behaviors of a two-prey two-predator system with impulsive effect on the predator of fixed moment are investigated. By applying the Floquet theory of liner periodic impulsive equation, we show that there exists a globally asymptotically stable two-prey eradication periodic solution when the impulsive period is less than some critical value. Further, we prove that the system is permanent if the impulsive period is large than some critical value, and meanwhile the conditions for the extinction of one of the two prey and permanence of the remaining three species are given. Finally, numerical simulation shows that there exists a stable positive periodic solution with a maximum value no larger than a given level. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels.  相似文献   

19.
In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.  相似文献   

20.
In the paper, we investigate an eco-epidemic system with impulsive birth. The conditions for the stability of infection-free periodic solution are given by applying Floquet theory of linear periodic impulsive equation. And we give the conditions of persistence by constructing a consequence of some abstract monotone iterative schemes. By using the method of coincidence degree, a set of sufficient conditions are derived for the existence of at least one strictly positive periodic solution. Finally, numerical simulation shows that there exists a stable positive periodic solution with a maximum value no larger than a given level. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号