首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an impulsive periodic predator–prey system with Watt-type functional response is investigated. By using the Floquet theory of linear periodic impulsive equation, the stability conditions for the prey-eradication positive periodic solution are given, and the boundedness of the system is proved. By the method of coincidence degree, the sufficient conditions for the existence of at least one strictly positive periodic solution are obtained. Furthermore, we give numerical analysis to confirm our theoretical results. It will be useful for ecosystem control.  相似文献   

2.
In this paper, the dynamic behaviors of a two-prey two-predator system with impulsive effect on the predator of fixed moment are investigated. By applying the Floquet theory of liner periodic impulsive equation, we show that there exists a globally asymptotically stable two-prey eradication periodic solution when the impulsive period is less than some critical value. Further, we prove that the system is permanent if the impulsive period is large than some critical value, and meanwhile the conditions for the extinction of one of the two prey and permanence of the remaining three species are given. Finally, numerical simulation shows that there exists a stable positive periodic solution with a maximum value no larger than a given level. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels.  相似文献   

3.
In this paper, we investigate a classical periodic Lotka–Volterra competing system with impulsive perturbations. The conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are given by applying Floquet theory of linear periodic impulsive equation, and we also give the conditions for the global stability of these solutions as a consequence of some abstract monotone iterative schemes introduced in this paper, which will be also used to get some sufficient conditions for persistence. By using the method of coincidence degree, the conditions for the existence of at least one strictly positive (componentwise) periodic solution are derived. The theoretical results are confirmed by a specific example and numerical simulations. It shows that the dynamic behaviors of the system we consider are quite different from the corresponding system without pulses.  相似文献   

4.
Although impulsive differential equations have become a widely concerned subject and a lot of models with impulsive effect have been studied in recent years, biochemical reaction models with impulsive input are rarely studied. In this paper, we consider an irreversible three molecular reaction model with impulsive input. By using the Floquet theorem and the method for the small parameter of impulsive differential equations, we obtain sufficient conditions for asymptotical stability and global stability of the given system. The existence of a positive periodic solution is also studied by the bifurcation theory. Further, we also show that our given conditions are right by numerical simulations.  相似文献   

5.
谭德君 《应用数学》2006,19(4):749-758
本文讨论一类具有脉冲效应和周期系数的两个食饵一个捕食者的捕食-食饵系统的动力学行为.利用脉冲微分方程比较定理和乘子理论,证明了系统的有界性,讨论了平凡周期解和半平凡周期解的稳定性,利用重合度的理论给出了系统存在周期正解的充分条件.  相似文献   

6.
In this paper, we study dynamics of a prey-predator system under the impulsive control. Sufficient conditions of the existence and the stability of semi-trivial periodic solutions are obtained by using the analogue of the Poincaré criterion. It is shown that the positive periodic solution bifurcates from the semi-trivial periodic solution through a transcritical bifurcation. A strategy of impulsive state feedback control is suggested to ensure the persistence of two species. Furthermore, a steady positive period-2 solution bifurcates from the positive periodic solution by the flip bifurcation, and the chaotic solution is generated via a cascade of flip bifurcations. Numerical simulations are also illustrated which agree well with our theoretical analysis.  相似文献   

7.
In this paper, we study a predator–prey system with an Ivlev-type functional response and impulsive control strategies containing a biological control (periodic impulsive immigration of the predator) and a chemical control (periodic pesticide spraying) with the same period, but not simultaneously. We find conditions for the local stability of the prey-free periodic solution by applying the Floquet theory of an impulsive differential equation and small amplitude perturbation techniques to the system. In addition, it is shown that the system is permanent under some conditions by using comparison results of impulsive differential inequalities. Moreover, we add a forcing term into the prey population’s intrinsic growth rate and find the conditions for the stability and for the permanence of this system.  相似文献   

8.
利用脉冲微分方程的对比定理以及李雅普诺夫函数法,我们研究了一类具有脉冲效应的浮游生物模型的持久性以及概周期解.文中所得结论改进了以往的研究成果.文中所用的研究方法可以用来研究其他带有脉冲的生物数学模型的持久性以及概周期解.最后,我们总结阐述了脉冲如何影响模型的持久性,概周期解以及一致渐进稳定性.  相似文献   

9.
A mathematical model for the dynamics of a prey-dependent consumption model concerning integrated pest management is proposed and analyzed. We show that there exists a globally stable pesteradication periodic solution when the impulsive period is less than some critical values. Furthermore, the conditions for the permanence of the system are given. By using bifurcation theory, we show the existence of a nontrival periodic solution if the pest-eradication periodic solution loses its stability. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamics, which implies that dynamical behaviors of prey-dependent consumption concerning integrated pest management are very complex, including period-doubling cascades, chaotic bands with periodic windows, crises, symmetry-breaking bifurcations and supertransients.  相似文献   

10.
In this paper, a chemostat model with variable yield and impulsive state feedback control is considered. We obtain sufficient conditions of the globally asymptotical stability of the system without impulsive state feedback control. We also obtain that the system with impulsive state feedback control has periodic solution of order one. Sufficient conditions for existence and stability of periodic solution of order one are given. In some cases, it is possible that the system exists periodic solution of order two. Our results show that the control measure is effective and reliable.  相似文献   

11.
A kind of predator-prey system of Holling typeⅡand interaction perturbation with impulsive effect is presented.By using Floquet theory and small amplitude perturbations skills,the locally asymptotical stability of prey-eradication periodic solution and the permanence of the system are discussed and the corresponding threshold conditions are given respectively.Finally,the existence of positive periodic solution is investigated by the bifurcation theory.  相似文献   

12.
A kind of predator-prey system of Holling type Ⅱ and interaction perturbation with impulsive effect is presented.By using Floquet theory and small amplitude perturbations skills,the locally asymptotical stability of prey-eradication periodic solution and the permanence of the system are discussed and the corresponding threshold conditions are given respectively.Finally,the existence of positive periodic solution is investigated by the bifurcation theory.  相似文献   

13.
In this paper, impulsive Lasota‐Wazewska model with infinite delay is studied. By using fixed point theorem of decreasing operator, we obtain sufficient conditions for the existence of unique almost periodic positive solution. Particularly, we give iterative sequence, which converges to the almost periodic positive solution. Moreover, we investigate exponential stability of the almost periodic positive solution by Liapunov functional. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
具有脉冲效应和综合害虫控制的捕食系统   总被引:8,自引:1,他引:7  
本文通过生物控制和化学控制提出了具有周期脉冲效应与害虫控制的捕食系统. 系统保护天敌避免灭绝,在一些条件下可以使害虫灭绝.就是说当脉冲周期小于某一临界值时,存在全局稳定害虫灭绝周期解.脉冲周期增大大于临界值时,平凡害虫灭绝周期解失去稳定性并产生正周期解,利用分支理论来研究正周期解的存在性.进而,利用李雅普诺夫函数和比较定理确定了持续生存的条件.  相似文献   

15.
According to biological strategy for pest control, we investigate the dynamic behavior of a pest management SEI model with saturation incidence concerning impulsive control strategy-periodic releasing infected pests at fixed times. We prove that all solutions of the system are uniformly ultimately bounded and there exists a globally asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. When the impulsive period is larger than some critical value, the stability of the pest-eradication periodic solution is lost; the system is uniformly permanent. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by period-doubling cascade, symmetry-breaking pitchfork bifurcation, quasi-periodic oscillate, chaos, and non-unique dynamics.  相似文献   

16.
In this paper, according to integrated pest management principles, a class of Lotka-Volterra predator-prey model with state dependent impulsive effects is presented. In this model, the control strategies by releasing natural enemies and spraying pesticide at different thresholds are considered. The sufficient conditions for the existence and stability of the positive order-1 periodic solution are given by the Poincaré map and the properties of the LambertW function.  相似文献   

17.
In this paper, we investigate the population dynamics described by the theta logistic model with periodic impulsive harvesting and by-catch mortality. We examine the existence and stability of two positive periodic solutions by using qualitative methods and cobwebs. Then the sufficient conditions under which the unique positive periodic solution exists and is semi-stable are established, and qualifications for the solutions approach zero are also obtained. Further, choosing the maximum sustainable yield as the management objective, we investigate the optimal harvesting policy for the theta logistic model with periodic impulsive harvesting. Moreover the corresponding theta logistic difference equation is considered subject to the impulsive perturbation, and the dynamics which is parallel to that for the differential equation is examined. The main results extend and generalize the classical results for populations described by the autonomous logistic equation in renewable resources management.  相似文献   

18.
In this paper, a mathematical model with impulsive state feedback control is proposed for turbidostat system. The sufficient conditions of existence of positive order one periodic solution are obtained by using the existence criteria of periodic solution of a general planar impulsive autonomous system. It is shown that the system either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentration of microorganism and substrate. By investigating the periodic solution, the period and the initial point of the periodic solution are given. The results show that turbidostat with impulsive state feedback control tends to an order one periodic solution.  相似文献   

19.
An impulsive predator–prey system with modified Leslie–Gower and Holling-type II schemes is presented. By using the Floquet theory of impulsive equation and small amplitude perturbation method, the globally asymptotical stability of prey-free positive periodic solution and the permanence of system are discussed. The corresponding threshold conditions are obtained respectively. Finally, numerical simulations are given.  相似文献   

20.
To keep a sustainable and steady output of ethanol, ethanol fermentation in a bio-reactor with impulsive state feedback control is formulated. The sufficient conditions for existences of order-1 periodic solution and order-2 periodic solution are obtained by using the properties of the periodic solution. The results imply that ethanol fermentation tends to an order-1 periodic solution or order-2 periodic solution. At the same time, we also give the complete expression of the period of the positive period-1 solution. Finally, discussions and numerical simulations are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号