首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The complex dynamics of a Holling type II prey–predator system with impulsive state feedback control is studied in both theoretical and numerical ways. The sufficient conditions for the existence and stability of semi-trivial and positive periodic solutions are obtained by using the Poincaré map and the analogue of the Poincaré criterion. The qualitative analysis shows that the positive periodic solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams, Lyapunov exponents, and phase portraits are illustrated by an example, in which the chaotic solutions appear via a cascade of period-doubling bifurcations. The superiority of the state feedback control strategy is also discussed.  相似文献   

2.
The dynamics of a predator–prey model with impulsive state feedback control, which is described by an autonomous system with impulses, is studied. The sufficient conditions of existence and stability of semi-trivial solution and positive period-1 solution are obtained by using the Poincaré map and analogue of the Poincaré criterion. The qualitative analysis shows that the positive period-1 solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams of periodic solutions are obtained by using the Poincaré map, and it is shown that a chaotic solution is generated via a cascade of period-doubling bifurcations.  相似文献   

3.
The dynamical behavior of an SIR epidemic model with birth pulse and pulse vaccination is discussed by means of both theoretical and numerical ways. This paper investigates the existence and stability of the infection-free periodic solution and the epidemic periodic solution. By using the impulsive effects, a Poincaré map is obtained. The Poincaré map, center manifold theorem, and bifurcation theorem are used to discuss flip bifurcation and bifurcation of the epidemic periodic solution. Moreover, the numerical results show that the epidemic periodic solution (period-one) bifurcates from the infection-free periodic solution through a supercritical bifurcation, the period-two solution bifurcates from the epidemic periodic solution through flip bifurcation, and the chaotic solution generated via a cascade of period-doubling bifurcations, which are in good agreement with the theoretical analysis.  相似文献   

4.
A periodic predator–prey-chain system with impulsive effects is considered. By using the global results of Rabinowitz and standard techniques of bifurcation theory, the existence of its trivial, semi-trivial and nontrivial positive periodic solutions is obtained. It is shown that the nontrivial positive periodic solution for such a system may be bifurcated from an unstable semi-trivial periodic solution. Furthermore, the stability of these periodic solutions is studied.  相似文献   

5.
In this paper, a predator–prey system which based on a modified version of the Leslie–Gower scheme and Holling-type II scheme with impulsive effect are investigated, where all the parameters of the system are time-dependent periodic functions. By using Floquet theory of linear periodic impulsive equation, some conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are obtained. It is proved that the system can be permanent if all the trivial and semi-trivial periodic solutions are linearly unstable. We use standard bifurcation theory to show the existence of nontrivial periodic solutions which arise near the semi-trivial periodic solution. As an application, we also examine some special case of the system to confirm our main results.  相似文献   

6.
In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.  相似文献   

7.
谭德君 《应用数学》2006,19(4):749-758
本文讨论一类具有脉冲效应和周期系数的两个食饵一个捕食者的捕食-食饵系统的动力学行为.利用脉冲微分方程比较定理和乘子理论,证明了系统的有界性,讨论了平凡周期解和半平凡周期解的稳定性,利用重合度的理论给出了系统存在周期正解的充分条件.  相似文献   

8.
Impulsive control in a stage structure population model with birth pulses   总被引:1,自引:0,他引:1  
The dynamical behavior of a stage structure population model with birth pulses and impulsive pest management strategy is discussed analytically and numerically. It is assumed that birth pulse and impulsive pest management strategy act with the same period, but not simultaneously. The existence and stability of the positive 2T-period solution are investigated. By using center manifold theorem and bifurcation theorem, the conditions of existence for flip bifurcation are derived. Moreover, some detailed numerical results for phase portraits, periodic solutions, bifurcation diagram, and chaotic attractors, which are illustrated with two examples, are in good agreement with the theoretical analysis.  相似文献   

9.
In this paper, a periodic predator–prey system with distributed time delays and impulsive effect is investigated. By using the Floquet theory of linear periodic impulsive equation, some conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are obtained. It is proved that the system can be permanent if all the trivial and semi-trivial periodic solutions are linearly unstable. We improve some results in Guo and Chen (2009) [1].  相似文献   

10.
具有脉冲效应和综合害虫控制的捕食系统   总被引:8,自引:1,他引:7  
本文通过生物控制和化学控制提出了具有周期脉冲效应与害虫控制的捕食系统. 系统保护天敌避免灭绝,在一些条件下可以使害虫灭绝.就是说当脉冲周期小于某一临界值时,存在全局稳定害虫灭绝周期解.脉冲周期增大大于临界值时,平凡害虫灭绝周期解失去稳定性并产生正周期解,利用分支理论来研究正周期解的存在性.进而,利用李雅普诺夫函数和比较定理确定了持续生存的条件.  相似文献   

11.
A predator–prey system with group defense and impulsive control strategy is established. By using Floquet theorem and small amplitude perturbation skills, a locally asymptotically stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value. Otherwise, if the impulsive period is larger than the critical value, the system is permanent. By using bifurcation theory, we show the existence and stability of positive periodic solution when the pest-eradication lost its stability. Further, numerical examples show that the system considered has more complicated dynamics, such as: (1) quasi-periodic oscillating, (2) period-doubling bifurcation, (3) period-halving bifurcation, (4) non-unique dynamics (meaning that several attractors coexist), (5) attractor crisis, etc. Finally, the biological implications of the results and the impulsive control strategy are discussed.  相似文献   

12.
In this paper, we investigate a classical periodic Lotka–Volterra competing system with impulsive perturbations. The conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are given by applying Floquet theory of linear periodic impulsive equation, and we also give the conditions for the global stability of these solutions as a consequence of some abstract monotone iterative schemes introduced in this paper, which will be also used to get some sufficient conditions for persistence. By using the method of coincidence degree, the conditions for the existence of at least one strictly positive (componentwise) periodic solution are derived. The theoretical results are confirmed by a specific example and numerical simulations. It shows that the dynamic behaviors of the system we consider are quite different from the corresponding system without pulses.  相似文献   

13.
In this paper, the flip bifurcation and periodic doubling bifurcations of a discrete population model without delay influence is firstly studied and the phenomenon of Feigenbaum’s cascade of periodic doublings is also observed. Secondly, we explored the Neimark–Sacker bifurcation in the delay population model (two-dimension discrete dynamical systems) and the unique stable closed invariant curve which bifurcates from the nontrivial fixed point. Finally, a computer-assisted study for the delay population model is also delved into. Our computer simulation shows that the introduction of delay effect in a nonlinear difference equation derived from the logistic map leads to much richer dynamic behavior, such as stable node → stable focus → an lower-dimensional closed invariant curve (quasi-periodic solution, limit cycle) or/and stable periodic solutions → chaotic attractor by cascading bubbles (the combination of potential period doubling and reverse period-doubling) and the sudden change between two different attractors, etc.  相似文献   

14.
According to biological strategy for pest control, we investigate the dynamic behavior of a pest management SEI model with saturation incidence concerning impulsive control strategy-periodic releasing infected pests at fixed times. We prove that all solutions of the system are uniformly ultimately bounded and there exists a globally asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. When the impulsive period is larger than some critical value, the stability of the pest-eradication periodic solution is lost; the system is uniformly permanent. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by period-doubling cascade, symmetry-breaking pitchfork bifurcation, quasi-periodic oscillate, chaos, and non-unique dynamics.  相似文献   

15.
研究了一类Neumann边界条件下带有保护区域的Leslie-Gower捕食-食饵模型,分析稳态系统从半平凡解处发生分歧的条件,得到了分歧方向及分歧值的唯一性,得到了在确定参数范围内,从半平凡解出发的分支解曲线的稳定性.  相似文献   

16.
In this paper, we present a two-dimensional autonomous dynamical system modeling a predator–prey food chain which is based on a modified version of the Leslie–Gower scheme and on the Holling-type II scheme with state dependent impulsive effects. By using the Poincaré map, some conditions for the existence and stability of semi-trivial solution and positive periodic solution are obtained. Numerical results are carried out to illustrate the feasibility of our main results.  相似文献   

17.
According to biological and chemical control strategy for pest, we investigate the dynamic behavior of a Lotka–Volterra predator–prey state-dependent impulsive system by releasing natural enemies and spraying pesticide at different thresholds. By using Poincaré map and the properties of the Lambert WW function, we prove that the sufficient conditions for the existence and stability of semi-trivial solution and positive periodic solution. Numerical simulations are carried out to illustrate the feasibility of our main results.  相似文献   

18.
In pest control, there are only a few papers on mathematical models of the dynamics of microbial diseases. In this paper a model concerning biologically-based impulsive control strategy for pest control is formulated and analyzed. The paper shows that there exists a globally stable susceptible pest eradication periodic solution when the impulsive period is less than some critical value. Further, the conditions for the permanence of the system are given. In addition, there exists a unique positive periodic solution via bifurcation theory, which implies both the susceptible pest and the infective pest populations oscillate with a positive amplitude. In this case, the susceptible pest population is infected to the maximum extent while the infective pest population has little effect on the crops. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamic, which implies that this model has more complex dynamics, including period-doubling bifurcation, chaos and strange attractors.  相似文献   

19.
The existance of nontrivial (x=0( periodic solutions of a general class of periodic nonlinear difference equations is proved using bifurcation theory methods. Specifically, the existance of a global continuum of nontrivial periodicsolutions that bifurcates from the trivial solution (x=0) is proved. Conditions are given under which the nontrivial solutions are positive. A prerrequisite Fredholm and adjoint operator theory for linear periodic systems is developed. An application to application dynamics is made.  相似文献   

20.
In this paper, we propose an SIS epidemic model for which population births occur during a single period of the year. Using the discrete map, we obtain exact periodic solutions of system which is with Ricker function. The existence and stability of the infection-free periodic solution and the positive periodic solution are investigated. The Poincaré map, the center manifold theorem and the bifurcation theorem are used to discuss flip bifurcation and bifurcation of the positive periodic solution. Numerical results imply that the dynamical behaviors of the epidemic model with birth pulses are very complex, including small-amplitude periodic 1 solution, large-amplitude multi-periodic cycles, and chaos. This suggests that birth pulse, in effect, provides a natural period or cyclicity that allow for a period-doubling route to chaos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号