首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立了一种短腔长复合式光纤法布里-珀罗压力传感器反射光谱的模型,提出了一种双参数椭圆拟合腔长解调算法,并对腔长为26~30μm的复合式法布里-珀罗腔的解调进行了仿真。结果表明,采用双参数椭圆拟合算法进行腔长解调的最大误差仅为0.05μm。搭建了光纤法布里-珀罗传感器解调系统,在加压条件下对复合式光纤法布里-珀罗压力传感器进行了解调实验,实现了20 kHz的解调速率,验证了所提算法在解调短腔长复合式光纤法布里-珀罗压力传感器方面的可行性与实时性。  相似文献   

2.
光纤法布里-珀罗干涉温度压力传感技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
李自亮  廖常锐  刘申  王义平 《物理学报》2017,66(7):70708-070708
光纤法布里-珀罗干涉温度和压力传感器具有灵敏度高、制作简单、成本低、体积小和抗电磁干扰能力强等优点,已被广泛应用于军事和民用领域.在某些环境恶劣,如具有强电磁干扰和腐蚀性,或提供给传感器的安装空间非常有限的特殊工业领域,微型光纤温度和压力传感器发挥着重要的作用,国内外诸多高校、科研院所都在对其进行研究.本文综述了光纤法布里-珀罗干涉仪的基本原理、制备技术、及其压力和温度传感应用的研究进展.详细介绍了湿法化学腐蚀制备法、电弧放电制备法、飞秒激光制备法、聚合物辅助制备法等常见光纤法布里-珀罗腔传感器的制作工艺,分析了不同制作工艺的优缺点;详细介绍了光纤法布里-珀罗干涉仪在温度传感、压力传感和温压一体传感领域的应用;最后对光纤法布里-珀罗干涉温度压力传感器的发展进行了总结和展望.  相似文献   

3.
为了在强电磁干扰、高温、高压等恶劣环境下实现压力的测量,进一步提高传感器的小型化并降低其制作成本,提出并设计了一种基于白光干涉解调的光纤法布里-珀罗压力传感器,实现了传感器的压力测量.基于微机电系统技术,采用光刻、阳极键合以及化学腐蚀的方法制作了以硅和玻璃构成的法布里-珀罗腔体,使用二氧化碳激光器对法布里-珀罗腔体与光纤进行焊接.基于白光干涉解调技术,利用斐索干涉仪与法布里-珀罗腔体的互相关关系对传感器进行了解调,并做了压力实验.实验结果表明:传感器在120~300kPa范围内具有较高的腔长变化灵敏度和线性度,分别为9.012 7nm/kPa和99.9%;传感器分辨率为0.1nm,重复性为0.1%.研究成果对低成本、高一致性光纤F-P传感器的批量制作具有一定的参考价值.  相似文献   

4.
研究了光纤法布里-珀罗腔传感器的腔长一致性的控制技术.通过三维调整架组成微调装置来控制全光纤法布里-珀罗腔的腔长;结合法布里-珀罗腔的工作原理,利用光谱分析仪实时检测加工过程中法布里-珀罗腔的腔长并用装置予以修正;以热熔接的方法将毛细玻璃管与光纤加工成法布里-珀罗腔;利用超景深光学显微系统检查加工的法布里-珀罗腔的关键部位的结构,并对熔接点的牢固性进行了检测.实验结果和数据分析显示:法布里-珀罗腔的腔长得到了较好的控制及一致性,熔接部位的变形和对法布里-珀罗腔的性能的影响也很小.该工艺可用于制备全光纤法布里-珀罗腔传感器.  相似文献   

5.
提出了一种用阵列波导光栅复用光纤微机电系统法布里-珀罗压力传感器的方法,实现了法布里-珀罗压力传感器的准分布式测量。传感器基于法布里-珀罗腔干涉的原理,采用微机电系统技术加工制作,用双波长方法解调干涉信号,利用传感器对两个不同波长光的反射率的比值与压力的单值关系确定所施加压力的大小,用阵列波导光栅实现传感器复用。理论分析与实验验证了传感器解调和复用的基本原理。实验结果表明:在压力的线性测量范围(0~1.5 MPa)内,系统的灵敏度(相对反射率比值/压力)可达到0.02026 MPa-1,测量结果具有较好的线形性,相对反射率比值的标准偏差小于3×10-4。该系统可以补偿传感器光网中和波长无关的变动引起的误差,具有好的线性、灵敏度和精度,复用能力强且复用传感器间无串扰。  相似文献   

6.
采用耦合石英膜和光纤接头构成非本征法布里-珀罗干涉仪(EFPI)传感器,检测液-固复合绝缘电介质中的局部放电声发射信号。为解决目前EFPI传感器灵敏度低的问题,依据弹性力学原理和有限元分析方法确定EFPI膜片结构设计方法,并制作传感器样品。建立以分布式反馈(DFB)激光器为光源的EFPI正交强度解调系统。以绝缘油针-板电极局部放电为信号源,利用压电陶瓷(PZT)传感器与EFPI样品进行对比测试。结果表明,EFPI传感器局放检测灵敏度取决于传感器频响带宽和静压灵敏度,完善了EFPI膜片设计方法,获得局放检测灵敏度与PZT相近的EFPI传感器。  相似文献   

7.
采用耦合石英膜和光纤接头构成非本征法布里-珀罗干涉仪(EFPI)传感器,检测液-固复合绝缘电介质中的局部放电声发射信号。为解决目前EFPI传感器灵敏度低的问题,依据弹性力学原理和有限元分析方法确定EFPI膜片结构设计方法,并制作传感器样品。建立以分布式反馈(DFB)激光器为光源的EFPI正交强度解调系统。以绝缘油针-板电极局部放电为信号源,利用压电陶瓷(PZT)传感器与EFPI样品进行对比测试。结果表明,EFPI传感器局放检测灵敏度取决于传感器频响带宽和静压灵敏度,完善了EFPI膜片设计方法,获得局放检测灵敏度与PZT相近的EFPI传感器。  相似文献   

8.
研究了面向海洋应用的光纤法布里-珀罗高压传感器,通过建立有限元数值模型对传感器满量程腔长变化量进行分析。数值仿真显示,有限元模型的满量程腔长变化量处于固支模型和简支模型之间,且随着法布里-珀罗腔半径的减小和硅膜片厚度的增加而偏离固支模型。引入固支边界条件偏离度β对偏离程度进行量化分析。制作了三种不同规格的传感器进行压力实验研究。实验结果显示,实际测量得到的传感器芯片满量程腔长变化量与有限元数值计算的结果基本吻合,使用该有限元模型设计传感器芯片可将满量程腔长变化量误差降低到13.4%以下。传感器最大量程达到105 MPa,满量程测量精度均优于0.100%。  相似文献   

9.
光纤光栅法布里-珀罗传感器频分复用技术   总被引:2,自引:0,他引:2  
沈震强  赵建林  张晓娟 《光学学报》2007,27(7):173-1177
理论分析了光纤光栅法布里-珀罗(F-P)传感器频分复用技术的原理,并给出了信号处理对腔长选取的要求。数值模拟结果表明,不同腔长的传感器具有不同的谐振条纹频率,为保证频域中的信号不发生重叠,要求不同光纤光栅法布里-珀罗传感器间的腔长之差必须大于光纤光栅的长度。进一步的实验及模拟分析结果发现,温度等待测量的变化仅仅使光纤光栅法布里-珀罗传感器的反射光谱整体平移,相应的频域信号只产生相移而形状不发生变化,因而不能采用普通光纤法布里-珀罗(FFP)传感器的腔长傅里叶变换解调法解调频分复用光纤光栅法布里-珀罗传感器的信号。根据这一特点,提出了利用自相关分析实现频分复用传感器系统信号解调的方案。  相似文献   

10.
设计并研制了一种新型光纤法布里-珀罗压力传感器,通过光刻、硅片刻蚀、阳极键合等微机电系统技术制作而成,适合恶劣环境下、狭小空间内的微压环境压力测量。详细阐述了传感器的结构设计和制作方式。该设计巧妙地利用了光纤法兰盘,保证了光纤端面与敏感膜的平行,从而形成高质量的法布里-珀罗干涉腔。该结构也有利于初始腔长的稳定,减小了传感器误差。建立了实验解调系统,对其压力、温度等特性进行了详细的测试。实验结果表明,在0~0.1MPa的压力范围内,传感器线性度好,重复性高,灵敏度达到了61.6μm/MPa。  相似文献   

11.
光纤法布里-珀罗传感器腔长的傅里叶变换解调原理研究   总被引:10,自引:7,他引:3  
章鹏  朱永  陈伟民 《光子学报》2004,33(12):1449-1452
在宽带光源条件下对光纤法布里-珀罗传感器腔长的傅里叶变换解调原理进行了详细的理论推导,在此基础上给出了具体的实现算法和仿真对比实验.仿真结果表明:采用傅里叶变换可以有效地对光纤法布里-珀罗传感器进行腔长解调.  相似文献   

12.
高精细度微透镜光纤法布里-珀罗干涉仪   总被引:1,自引:0,他引:1  
通过在镀膜单模光纤端面制作微透镜,构造了微透镜光纤法布里-珀罗干涉仪.利用ABCD矩阵方法分析厂微透镜法布单-珀罗腔的模场.由于微透镜的会聚作用,法布里-珀罗腔模场可以和单模光纤模场良好的匹配,从而达到高精细度和低插入损耗.实验制作的微透镜光纤法布里-珀罗干涉仪,自由光谱区范围32.28 nm,精细度为78,峰值透射比为73%;在法布里-珀罗腔的光学腔长增加到100um的情况下,峰值透射比仍然大于50%.该微透镜光纤法布里-珀罗十涉仪制作容易、对设备要求低,可以封装成光纤法布里-珀罗滤波器和传感器,具有广泛的应用前景.  相似文献   

13.
龚元  郭宇  饶云江  赵天  吴宇  冉曾令 《物理学报》2011,60(6):64202-064202
理论上推导了光纤法布里-珀罗复合结构传感器的反射光谱条纹对比度与外界介质折射率的关系,并分析了实验参数对传感器灵敏度的影响.利用化学腐蚀渐变折射率多模光纤制作了光纤法布里-珀罗复合结构折射率传感器,空气中的条纹对比度可达30 dB以上,折射率测量的灵敏度达45 dB/RIU(refraction index unit,简RIU)以上.实验结果与理论符合很好.通过理论和实验分析,提出了进一步提高传感器灵敏度的方法. 关键词: 光纤传感器 法布里-珀罗复合结构 折射率测量 灵敏度  相似文献   

14.
李志全  朱丹丹 《光学技术》2003,29(4):418-419
论述了一种非本征法布里 珀罗光纤应变传感器。采用透明弹性聚合物薄膜作为法布里 珀罗干涉腔,聚合物固定在多膜光纤末端作为应变敏感元件。传感器的分辨率为2μm,测量精度在0~5000μm范围内为5μm。  相似文献   

15.
提出了一种基于光纤光栅法布里-珀罗干涉仪且可以同时测量交变电流和温度的传感器,并对其进行了理论分析和实验研究.该传感器采用单频激光入射,作为反射镜的一对光纤布喇格光栅自由放置,其间的法布里-珀罗腔粘贴在磁致伸缩材料上,通电导线周围的磁场通过磁致伸缩材料作用于光纤光栅法布里-珀罗腔,引起腔长周期性变化.同时,由于热膨胀和热光效应,环境温度的变化会引起光纤长度和折射率的改变,从而改变光纤光栅法布里-珀罗腔的反射光谱特性.通过检测输出光信号的频率和峰值可实现电流和温度的同时测量.对通电线圈的电流及环境温度进行测量的实验结果与理论分析相吻合.  相似文献   

16.
提出了一种基于光纤光栅法布里-珀罗干涉仪且可以同时测量交变电流和温度的传感器,并对其进行了理论分析和实验研究.该传感器采用单频激光入射,作为反射镜的一对光纤布喇格光栅自由放置,其间的法布里-珀罗腔粘贴在磁致伸缩材料上,通电导线周围的磁场通过磁致伸缩材料作用于光纤光栅法布里-珀罗腔,引起腔长周期性变化.同时,由于热膨胀和热光效应,环境温度的变化会引起光纤长度和折射率的改变,从而改变光纤光栅法布里-珀罗腔的反射光谱特性.通过检测输出光信号的频率和峰值可实现电流和温度的同时测量.对通电线圈的电流及环境温度进行测量的实验结果与理论分析相吻合.  相似文献   

17.
为了同时探测混合溶液中多种溶质的浓度,提出一种用光纤法布里-珀罗谐振器作为传感器测量混合溶液中多溶质浓度的测量系统.从理论上分析了光纤法布里-珀罗谐振器干涉透射波长与混合溶液浓度之间的关系,采用光纤法布里-珀罗谐振器干涉透射波长实现了高准确度同时测量混合溶液中多溶质浓度的原理和可行性.构建了由InGaAs发光二极管光源、光纤耦合器、FFPR传感器、光电信号转换和放大器、光谱分析仪等组成的测量系统.对乙醇和甘油的9组标准混合溶液进行测量实验,并用测量结果标定了混合溶液中各溶质浓度与光纤法布里-珀罗谐振器传感器干涉透射波长之间的数学解析关系式.根据数学关系式用Action Script 2.0脚本语言编写程序,计算机实时监控了混合溶液中各溶质浓度的变化过程.  相似文献   

18.
金清理  黄晓虹  王振国  颜利芬  张栋 《光子学报》2014,39(12):2147-2151
为了同时探测混合溶液中多种溶质的浓度,提出一种用光纤法布里-珀罗谐振器作为传感器测量混合溶液中多溶质浓度的测量系统.从理论上分析了光纤法布里-珀罗谐振器干涉透射波长与混合溶液浓度之间的关系,采用光纤法布里-珀罗谐振器干涉透射波长实现了高准确度同时测量混合溶液中多溶质浓度的原理和可行性.构建了由InGaAs发光二极管光源、光纤耦合器、FFPR传感器、光电信号转换和放大器、光谱分析仪等组成的测量系统.对乙醇和甘油的9组标准混合溶液进行测量实验,并用测量结果标定了混合溶液中各溶质浓度与光纤法布里-珀罗谐振器传感器干涉透射波长之间的数学解析关系式.根据数学关系式用Action Script 2.0脚本语言编写程序,计算机实时监控了混合溶液中各溶质浓度的变化过程.  相似文献   

19.
《光学学报》2021,41(3):208-215
为了满足压力测量中的高灵敏度、高分辨率、高可靠性等要求,本文提出了一种基于调频连续波激光干涉解调原理的高精度膜片式珐珀腔光纤压力传感器。首先推导了基于该原理的压力测量模型,然后搭建了一套测量装置,通过气泵向SUS631不锈钢膜片组成的密封腔连续给压,得出气压在0~600 kPa范围内变化时膜片中心(即珐珀腔腔长变化量)随气压变化的特性曲线;之后,测试25℃环境条件下不同压力测量值的稳定性,讨论引起腔长变化量漂移的原因;最后,在消除系统误差后得出了压力测量的分辨率。结果表明:该传感器的灵敏度为286.55 nm/kPa,分辨率为0.287 nm/Pa,压力传感器的测量随机误差呈正态分布。该调频连续波光纤压力传感器可以进行高灵敏度、高分辨率和高稳定性测量。  相似文献   

20.
报道了一种用空芯光子晶体光纤制作的法布里-珀罗腔体,利用光纤熔接方法将该法布里-珀罗腔体和两根普通通信单模光纤熔接起来构成的微小型光纤法布里-珀罗干涉应变传感器。这种干涉传感器制作过程仅应用了切割和熔接手段,光纤材料单一,因此受温度变化的影响小。另外,该类型传感器的干涉腔长度对干涉信号强度影响不大,其干涉腔长度可至数厘米。因此,这类传感器将在大容量、准分布式传感系统中具有极大的潜在应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号