首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Au/silicon nitride/In0.82Al0.18As metal insulating semiconductor (MIS) capacitors were fabricated and then investigated by capacitance voltage (CV) test at variable frequencies and temperatures. Two different technologies silicon nitride (SiNx) films deposited by inductively coupled plasma chemical vapor deposition (“ICPCVD”) and plasma enhanced chemical vapor deposition (“PECVD”) were applied to the MIS capacitors. Fixed charges (Nf), fast (Dit) and slow (Nsi) interface states were calculated and analyzed for the different films deposition MIS capacitors. The Dit was calculated to be 4.16 × 1013 cm−2 eV−1 for “ICPCVD” SiNx MIS capacitors, which was almost the same to that of “PECVD” SiNx MIS capacitors. The Dit value is obviously higher for the extended wavelength InxGa1−xAs (x > 0.53) epitaxial material as a result of lattice mismatch with substrate. Compared to the results of “PECVD” SiNx MIS capacitors, the Nsi was significantly lower and the Nf was slightly lower for “ICPCVD” SiNx MIS capacitors. X-ray photoelectron spectroscopy (XPS) analysis shows good quality of the “ICPCVD” grown SiNx. The low temperature deposited SiNx films grown by “ICPCVD” show better effect on decreasing the dark current of InxGa1−xAs photodiodes.  相似文献   

2.
Hydrogenated amorphous silicon nitride (a-SiNx:H) thin films have been deposited through the green chemistry route using silane (SiH4) and nitrogen (N2) as process gases with SiH4 flow being variable and N2 flow being constant without the use of pollutant and corrosive ammonia (NH3) by the plasma-enhanced chemical vapor deposition technique at 13.56 MHz. Fourier transform infrared spectroscopy analysis shows various possible vibrational modes of Si-H, Si-N, and N-H bonds present in the film. Raman spectroscopy is performed on these samples to calculate volume fractions corresponding to amorphous phases present in the a-SiNx:H films. The refractive index (η) values are calculated using Swanepoel's method, which are in the range of 2.89 to 3.17. The thickness of the deposited films has been evaluated using transmission spectra. Absorption coefficient and band gap (E g) values are obtained from optical absorption studies. An increase in the E g and a decrease in the η value have been observed for the samples grown with decreasing SiH4 flow.  相似文献   

3.
The effects of interfacial insulator layer, interface states (Nss) and series resistance (Rs) on the electrical characteristics of Au/n-Si structures have been investigated using forward and reverse bias current-voltage (I-V) characteristics at room temperature. Therefore, Au/n-Si Schottky barrier diodes (SBDs) were fabricated as SBDs with and without insulator SnO2 layer to explain the effect of insulator layer on main electrical parameters. The values of ideality factor (n), Rs and barrier height (ΦBo) were calculated from ln(I) vs. V plots and Cheung methods. The energy density distribution profile of the interface states was obtained from the forward bias I-V data by taking bias dependence of ideality factor, effective barrier height (Φe) and Rs into account for MS and MIS SBDs. It was found that Nss values increase from at about mid-gap energy of Si to bottom of conductance band edge of both SBDs and the MIS SBD’s Nss values are 5-10 times lower than those of MS SBD’s. An apparent exponential increase from the mid-gap towards the bottom of conductance band is observed for both SBDs’ (MS and MIS) interface states obtained without taking Rs into account.  相似文献   

4.
Ultra thin films of pure silicon nitride were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma with a high content of nitrogen atoms. The effect of annealing of silicon nitride surface was investigated with core-level photoelectron spectroscopy. The Si 2p photoelectron spectra reveals a characteristic series of components for the Si species, not only in stoichiometric Si3N4 (Si4+) but also in the intermediate nitridation states with one (Si1+) or three (Si3+) nitrogen nearest neighbors. The Si 2p core-level shifts for the Si1+, Si3+, and Si4+ components are determined to be 0.64, 2.20, and 3.05 eV, respectively. In annealed sample it has been observed that the Si4+ component in the Si 2p spectra is significantly improved, which clearly indicates the crystalline nature of silicon nitride. The high resolution X-ray diffraction (HRXRD), scanning electron microscopy (SEM) and photoluminescence (PL) studies showed a significant improvement of the crystalline qualities and enhancement of the optical properties of GaN grown on the stoichiometric Si3N4 by molecular beam epitaxy (MBE).  相似文献   

5.
High quality silicon nitride films are deposited at low temperature on InP substrates by direct photolysis at 185 nm of a NH3-SiH4 gas mixture. The composition of the films is measured by nuclear analysis. The thickness and refractive index are obtained by ellipsometry at 632.8 nm. As-deposited and post annealed samples are electrically characterized: quasi-static I(V) at 5×10–4 Hz and C(V) characteristics at 1 MHz are performed on InP MIS diodes structures in order to optimize bulk and interface properties. At 250° C and 4 Torr, it is found that the highest critical field (measured for a leakage current density of 10–9 A/cm2) is obtained for the injected ratio [SiH4]/[NH3]=2%. For these conditions, the film is stoichiometric, the critical field is 4 MV/cm and the resistivity is 6×1015 cm. The interface state density (N ss) on InP is deduced from Terman analysis. The annealing conditions and the surface cleaning of InP have been optimized in order to reduce the N ss which is, for our best conditions, as low as 2×1011 eV–1 cm–2.  相似文献   

6.
In0.3Ga0.7N metal-insulator-semiconductor (MIS) and metal-semiconductor (MS) surface barrier photodetectors have been fabricated. The In0.3Ga0.7N epilayers were grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The photoresponse and reverse current-voltage characteristics of the In0.3Ga0.7N MIS and MS photodetectors were measured. A best zero bias responsivity of 0.18 A/W at 450 nm is obtained for the In0.3Ga0.7N MIS photodetector with 10 nm Si3N4 insulator layer, which is more than ten times higher than the In0.3Ga0.7N MS photodetector. The reason is attributed to the decrease of the interface states and increase of surface barrier height by the inserted insulator. The influence of the thickness of the Si3N4 insulator layer on the photoresponsivity of the MIS photodetector is also discussed.  相似文献   

7.
A. Bahari  Z.S. Li 《Surface science》2006,600(15):2966-2971
The growth of ultrathin films of Si3N4 directly on Si surfaces is studied with valence band photoemission. The information from these studies about the growth mechanism and the changes of the electronic structure is enhanced by the use of various photon energies with synchrotron radiation. The silicon nitride films are grown isothermally on the Si(1 0 0) and Si(1 1 1) surfaces by reactions with atomic N. The atomic nitrogen is produced by using a remote, microwave excited nitrogen plasma. The growth under these conditions was earlier shown to be self limiting. The details in the valence band spectra are identified and resolved with numerical methods, and followed systematically during the growth. Thus the identification of Si surface states, Si-nitride interface states and bulk nitride states becomes possible. The previously obtained separation between amorphous and crystalline growth occurring around 500 °C is further supported in the present studies.  相似文献   

8.
本文中研究了O+(200keV,1.8×1018/cm2)和N+(190keV,1.8×1018/cm2)注入Si形成SOI(Silicon on Insulator)结构的界面及埋层的化学组成。俄歇能谱的测量和研究结果表明:注O+的SOI结构在经1300℃,5h退火后,其表层Si和氧化硅埋层的界面存在一个不饱和氧化硅状态,氧化硅埋层是由SiO2相和这不饱和氧化硅态组成,而且氧化硅埋层和体硅界面不同于表层Si和氧化硅埋层界面;注N+的SOI结构在经1200℃,2h退火后,其氮化硅埋层中存在一个富N的疏松夹层,表层Si和氮化硅埋层界面与氮化硅埋层和体硅界面性质亦不同。这些结果与红外吸收和透射电子显微镜及离子背散射谱的分析结果相一致。还对两种SOI结构界面与埋层的不同特征的原因进行了分析讨论。 关键词:  相似文献   

9.
Hydrogenated amorphous silicon nitride films have been deposited by the rf magnetron sputtering method with non-stoichiometric and stoichiometric compositions using a poly-Si target and a mixture of Ar, H2 and N2 as the sputtering gas. Data on optical and infrared absorption, electrical conductivity, breakdown voltage, capacitance measurements and thermal evolution of hydrogen have been presented as a function of nitrogen concentration in the films, especially in the stoichiometric region of composition. Attempts have been made to identify the roles of hydrogen and nitrogen in determining the electrical and optical properties and thermal stability exhibited by the films. Properties relevant for device application of the material have been shown to be comparable to those obtained by glow discharge or electron cyclotron resonance plasma chemical vapour deposition methods of deposition. RF magnetron sputtering has therefore been suggested as a viable alternative to the more widely adopted CVD methods for device applications of silicon nitride, where the use of hazardous process gases can be avoided.  相似文献   

10.
We present in this study a spectroscopic investigation of the delamination of the amorphous carbon nitride (a-CNx) films deposited by RF magnetron sputtering of a graphite target in Ar/N2 gas mixture. The microstructure of the studied films have been analysed prior and after their delamination. The origin of the observed spontaneous delamination have been elucidated in terms of chemical reactions between water and CN bonds at the a-CNx/Si interface, which support delamination crack advance.  相似文献   

11.
This paper presents the fabrication and characterization of Al/PVA:n-CdS (MS) and Al/Al2O3/PVA:n-CdS (MIS) diode. The effects of interfacial insulator layer, interface states (N ss ) and series resistance (R s ) on the electrical characteristics of Al/PVA:n-CdS structures have been investigated using forward and reverse bias IV, CV, and G/wV characteristics at room temperature. Al/PVA:n-CdS diode is fabricated with and without insulator Al2O3 layer to explain the effect of insulator layer on main electrical parameters. The values of the ideality factor (n), series resistance (R s ) and barrier height (? b ) are calculated from ln(I) vs. V plots, by the Cheung and Norde methods. The energy density distribution profile of the interface states is obtained from the forward bias IV data by taking into account the bias dependence ideality factor (n(V)) and effective barrier height (? e ) for MS and MIS diode. The N ss values increase from mid-gap energy of CdS to the bottom of the conductance band edge for both MS and MIS diode.  相似文献   

12.
An investigation was made of the Hall and conductivity mobilities of holes in an inversion channel, and the C-V as well as G-V characteristics of Al-SiO2-Si structures were recorded. It was established that the technology of fabrication of MIS structures influenced the parameters of the Si-SiO2 interface. It was found that chemodynamic polishing of silicon plates before oxidation improved significantly the properties of the Si-SiO2 interface. A relationship was found between the density of the surface states (Nss) and the mobility of holes in an inversion channel. It was found that the high mobility of holes at the channel opening threshold was mainly due to a reduction in Nss at the Si-SiO2 interface and in the insulator near this Si-SiO2 interface. In addition to the phonon scattering mechanism, the scattering by the charge in the surface states at the Si-SiO2 interface also played an important role.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 44–48, December, 1980.  相似文献   

13.
The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the SiNx:H film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. For optimizing surface layer in crystalline silicon solar cells, by varying gas mixture ratios (SiH4 + NH3 + N2, SiH4 + NH3, SiH4 + N2), the hydrogenated silicon nitride films were analyzed for its antireflection and surface passivation (electrical and chemical) properties. The film deposited with the gas mixture of SiH4 + NH3 + N2 showed the best properties in before and after firing process conditions.The single crystalline silicon solar cells fabricated according to optimized gas mixture condition (SiH4 + NH3 + N2) on large area substrate of size 156 mm × 156 mm (Pseudo square) was found to have the conversion efficiency as high as 17.2%. The reason for the high efficiency using SiH4 + NH3 + N2 is because of the good optical transmittance and passivation properties. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.  相似文献   

14.
15.
Carbon nitride (CNx) thin films have been grown on Si 〈1 0 0〉 by 193 nm ArF ns pulsed laser ablation of a pure graphite target in a low pressure atmosphere of a RF generated N2 plasma and compared with samples grown by PLD in pure nitrogen atmosphere. Composition, structure and bonding of the deposited materials have been evaluated by X-ray photoelectron spectroscopy (XPS), and Raman scattering. Significant chemical and micro-structural changes have been registered, associated to different nitrogen incorporation in the two types of films analyzed. The intensity of the reactive activated species is, indeed, increased by the presence of the bias confined RF plasma, as compared to the bare nitrogen atmosphere, thus resulting in a different nitrogen uptake in the growing films. The process has been also investigated by some preliminary optical emission studies of the carbon plume expanding in the nitrogen atmosphere. Optical emission spectroscopy reveals the presence of many excited species like C+ ions, C atoms, C2, N2; and CN radicals, and N2+ molecular ions, whose relative intensity appears to be increased in the presence of the RF plasma. The films were also characterised for electrical properties by the “four-probe-test method” determining sheet resistivity and correlating surface conductivity with chemical composition.  相似文献   

16.
采用微波等离子体化学气相沉积法,用高纯氮气(99.999%)和甲烷(99.9%)作反应气体,在单晶Si(100)基片上沉积C3N4薄膜.利用扫描电子显微镜观察薄膜形貌,表明薄膜由密排的六棱晶棒组成.X射线衍射和透射电子显微镜结构分析说明该薄膜主要由β-C3N4和α-C3N4组成,并且这些结果与α-C3N4相符合较好.由虎克定律近似关 关键词: 3N4')" href="#">C3N4 微波等离子体化学气相沉积法 薄膜沉积  相似文献   

17.
The effect of the technology of preparation of silicon nitride in a low temperature gas discharge plasma upon the volt-ampere and volt-farad characteristics of metal-dielectricsemiconductor (MDS) structures (Al-Si3N4-Si-Al) is studied. It is shown that by using a heterogeneous Si3N4 formation reaction with ionic purification of the silicon surface, it is possible to obtain MDS structures with lower and more stable surface charge in comparison to similar structures in which the Si3N4 is grown by other methods (for example, gas transport reaction methods). The conductivity of the Si3N4 film is described approximately by the well known Frankel model, and its value is close to that of Si3N4 films prepared by other methods.  相似文献   

18.
丁万昱  徐军  李艳琴  朴勇  高鹏  邓新绿  董闯 《物理学报》2006,55(3):1363-1368
利用微波ECR磁控反应溅射法在室温下制备无氢SiNx薄膜.通过傅里叶红外光谱 、X射线电子谱、膜厚仪、纳米硬度仪、原子力显微镜等分析手段,分析了N2流 量、Si靶溅射功率等实验参数对SiNx薄膜结构、化学配比以及机械性质的影响. 结果表明,SiNx薄膜中Si-N结构、化学配比及机械性质与等离子体中的Si元素 含量关系密切,随着N2流量的增加或者Si靶溅射功率的降低,等离子体中的Si 元素含量降低,SiNx薄膜结构、化学配比及硬度发生变化,红外光谱发生偏移 ,硬度下降,沉积速率降低. 关键词: x')" href="#">SiNx 磁控溅射 傅里叶变换红外吸收光谱 X射线电子谱  相似文献   

19.
利用射频磁控反应溅射技术,制备了氮掺杂的SiO2纳米薄膜.发现N掺杂SiO2体系纳米薄膜具有铁磁性.较小的氮化硅颗粒均匀分布在氧化硅基质中有利于磁有序的形成.基底温度为400℃时,样品薄膜具有最大的饱和磁化强度和矫顽力,分别为35 emu/cm3和75 Oe.薄膜的磁性可能产生于氮化硅和氧化硅的界面.理论计算表明,N掺杂SiO2体系具有净自旋.同时,由氮化硅和氧化硅界面之间的电荷转移导致的轨道磁矩也会对样品的磁性有贡献 关键词: 2薄膜')" href="#">N掺杂SiO2薄膜 射频磁控反应溅射 界面磁性 基底温度  相似文献   

20.
Charge injection behaviours in silicon nitride of an Al/Si3N4/n-Si metal?Cinsulator?Csemiconductor (MIS) device are systematically studied before and after applying different high constant DC bias conditions with the aim of controlling charge accumulation in the dielectric when a high actuation voltage is applied. We found that both polarity and magnitude of charge accumulation in silicon nitride depend on the biasing direction. Charge injection from the semiconductor to the silicon nitride always dominates over charge injection from the Al electrode to the silicon nitride. Negative charge accumulation happens in silicon nitride when the Al electrode is positively biased, and positive charge accumulation occurs in silicon nitride when the Al electrode is negatively biased. The positive charge accumulation is much bigger than the negative charge accumulation under the same magnitude of stress voltage. Furthermore, the experimental results also show that the charge injection level exponentially increases with the applied voltage across the silicon nitride. These observed experimental results can be well explained by a modified Fowler?CNordheim tunnelling charge injection model, which takes into account the roles of both electrons and holes in the process of charge injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号