首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李聪  庄奕琪  张丽  靳刚 《中国物理 B》2014,23(1):18501-018501
Based on the quasi-two-dimensional(2D) solution of Poisson’s equation in two continuous channel regions, an analytical threshold voltage model for short-channel junctionless dual-material cylindrical surrounding-gate(JLDMCSG) metal-oxide-semiconductor field-effect transistor(MOSFET) is developed. Using the derived model, channel potential distribution, horizontal electrical field distribution, and threshold voltage roll-off of JLDMCSG MOSFET are investigated. Compared with junctionless single-material CSG(JLSGCSG) MOSFET, JLDMCSG MOSFET can effectively suppress short-channel effects and simultaneously improve carrier transport efficiency. It is also revealed that threshold voltage rolloff of JLDMCSG can be significantly reduced by adopting both a small oxide thickness and a small silicon channel radius. The model is verified by comparing its calculated results with that obtained from three-dimensional(3D) numerical device simulator ISE.  相似文献   

2.
吴铁峰  张鹤鸣  王冠宇  胡辉勇 《物理学报》2011,60(2):27305-027305
小尺寸金属氧化物半导体场效应晶体管(MOSFET)器件由于具有超薄的氧化层、关态栅隧穿漏电流的存在严重地影响了器件的性能,应变硅MOSFET器件也存在同样的问题.为了说明漏电流对新型应变硅器件性能的影响,文中利用积分方法从准二维表面势分析开始,提出了小尺寸应变硅MOSFET栅隧穿电流的理论预测模型,并在此基础上使用二维器件仿真软件ISE进行了仔细的比对研究,定量分析了在不同栅压、栅氧化层厚度下MOSFET器件的性能.仿真结果很好地与理论分析相符合,为超大规模集成电路的设计提供了有价值的参考. 关键词: 应变硅 准二维表面势 栅隧穿电流 预测模型  相似文献   

3.
In this paper, a new nanoscale graded channel gate stack (GCGS) double-gate (DG) MOSFET structure and its 2-D analytical model have been proposed, investigated and expected to suppress the short-channel-effects (SCEs) and improve the subthreshold performances for nanoelectronics applications. The model predicts a shift, increasing potential barrier, in the surface potential profile along the channel, which ensures a reduced threshold voltage roll-off and DIBL effects. In the proposed structure, the subthreshold current and subthreshold swing characteristics are greatly improved in comparison with the conventional DG MOSFETs. The developed approaches are verified and validated by the good agreement found with the numerical simulation. (GCGS) DG MOSFET can alleviate the critical problem and further improve the immunity of SCEs of CMOS-based devices in the nanoscale regime.  相似文献   

4.
为了研究高介电常数(高k)栅介质材料异质栅中绝缘衬底上的硅和金属-氧化物-硅场效应晶体管的短沟道效应,为新结构器件建立了全耗尽条件下表面势和阈值电压的二维解析模型.模型中考虑了各种主要因素的影响,包括不同介电常数材料的影响,栅金属长度及其功函数变化的影响,不同漏电压对短沟道效应的影响.结果表明,沟道表面势中引入了阶梯分布,因此源端电场较强;同时漏电压引起的电势变化可以被屏蔽,抑制短沟道效应.栅介电常数增大,也可以较好的抑制短沟道效应.解析模型与数值模拟软件ISE所得结果高度吻合. 关键词: 异质栅 绝缘衬底上的硅 阈值电压 解析模型  相似文献   

5.
辛艳辉  刘红侠  范小娇  卓青青 《物理学报》2013,62(15):158502-158502
为了进一步提高深亚微米SOI (Silicon-On-Insulator) MOSFET (Metal-Oxide Semiconductor Field Effect Transistor) 的电流驱动能力, 抑制短沟道效应和漏致势垒降低效应, 提出了非对称Halo异质栅应变Si SOI MOSFET. 在沟道源端一侧引入高掺杂Halo结构, 栅极由不同功函数的两种材料组成. 考虑新器件结构特点和应变的影响, 修正了平带电压和内建电势. 为新结构器件建立了全耗尽条件下的表面势和阈值电压二维解析模型. 模型详细分析了应变对表面势、表面场强、阈值电压的影响, 考虑了金属栅长度及功函数差变化的影响. 研究结果表明,提出的新器件结构能进一步提高电流驱动能力, 抑制短沟道效应和抑制漏致势垒降低效应, 为新器件物理参数设计提供了重要参考. 关键词: 非对称Halo 异质栅 应变Si 短沟道效应  相似文献   

6.
By solving Poisson’s equation in both semiconductor and gate insulator regions in the cylindrical coordinates, an analytical model for a dual-material surrounding-gate (DMSG) metal–oxide semiconductor field-effect transistor (MOSFET) with a high-κ gate dielectric has been developed. Using the derived model, the influences of fringing-induced barrier lowering (FIBL) on surface potential, subthreshold current, DIBL, and subthreshold swing are investigated. It is found that for the same equivalent oxide thickness, the gate insulator with high-κ dielectric degrades the short-channel performance of the DMSG MOSFET. The accuracy of the analytical model is verified by the good agreement of its results with that obtained from the ISE three-dimensional numerical device simulator.  相似文献   

7.
A two-dimensional (2-D) analytical model for a Dual Material Gate (DMG) AlGaN/GaN High Electron Mobility Transistor (HEMT) has been developed to demonstrate the unique attributes of this device structure in suppressing short channel effects (SCEs). The model accurately predicts the channel potential, electric field variation along the channel, and sub-threshold drain current, taking into account the effect of lengths of the two gate metals, their work functions, barrier layer thicknesses, and applied drain biases. It is seen that the SCEs and hot carrier effects in DMG AlGaN/GaN HEMT are suppressed due to the work function difference of the two metal gates, thereby screening the drain potential variations by the gate near the drain. Besides, a more uniform electric field along the channel leads to improved carrier transport efficiency. The accuracy of the results obtained from our analytical model has been verified using ATLAS device simulations.  相似文献   

8.
By solving Poisson's equation in both semiconductor and gate insulator regions in the cylindrical coordinates, an analytical model for a dual-material surrounding-gate (DMSG) metal-oxide semiconductor field-effect transistor (MOSFET) with a high-kappa gate dielectric has been developed. Using the derived model, the influences of fringing-induced barrier lowering (FIBL) on surface potential, subthreshold current, DIBL, and subthreshold swing are investigated. It is found that for the same equivalent oxide thickness, the gate insulator with high-kappa dielectric degrades the short-channel performance of the DMSG MOSFET. The accuracy of the analytical model is verified by the good agreement of its results with that obtained from the ISE three-dimensional numerical device simulator.  相似文献   

9.
This work covers the impact of dual metal gate engineered Junctionless MOSFET with various high-k dielectric in Nanoscale circuits for low power applications. Due to gate engineering in junctionless MOSFET, graded potential is obtained and results in higher electron velocity of about 31% for HfO2 than SiO2 in the channel region, which in turn improves the carrier transport efficiency. The simulation is done using sentaurus TCAD, ON current, OFF current, ION/IOFF ratio, DIBL, gain, transconductance and transconductance generation factor parameters are analysed. When using HfO2, DIBL shows a reduction of 61.5% over SiO2. The transconductance and transconductance generation factor shows an improvement of 44% and 35% respectively. The gain and output resistance also shows considerable improvement with high-k dielectrics. Using this device, inverter circuit is implemented with different high-k dielectric material and delay have been decreased by 4% with HfO2 when compared to SiO2. In addition, a significant reduction in power dissipation of the inverter circuit is obtained with high-k dielectric Dual Metal Surround Gate Junctionless Transistor than SiO2 based device. From the analysis, it is found that HfO2 will be a better alternative for the future nanoscale device.  相似文献   

10.
刘凡宇  刘衡竹  刘必慰  郭宇峰 《中国物理 B》2016,25(4):47305-047305
In this paper, the three-dimensional(3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator(SOI) Fin FETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional(2D) potential model is proposed for the subthreshold region of junctionless SOI Fin FET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted.  相似文献   

11.
李聪  庄奕琪  韩茹  张丽  包军林 《物理学报》2012,61(7):78504-078504
为抑制短沟道效应和热载流子效应, 提出了一种非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET新结构. 通过在圆柱坐标系中精确求解三段连续的泊松方程, 推导出新结构的沟道静电势、阈值电压以及亚阈值电流的解析模型. 结果表明, 新结构可有效抑制短沟道效应和热载流子效应, 并具有较小的关态电流. 此外, 分析还表明栅交叠区的掺杂浓度对器件的亚阈值电流几乎没有影响, 而栅电极功函数对亚阈值电流的影响较大. 解析模型结果和三维数值仿真工具ISE所得结果高度符合.  相似文献   

12.
吕懿  张鹤鸣  胡辉勇  杨晋勇 《物理学报》2014,63(19):197103-197103
热载流子效应产生的栅电流是影响器件功耗及可靠性的重要因素之一,本文基于热载流子形成的物理过程,建立了单轴应变硅NMOSFET热载流子栅电流模型,并对热载流子栅电流与应力强度、沟道掺杂浓度、栅源电压、漏源电压等的关系,以及TDDB(经时击穿)寿命与栅源电压的关系进行了分析研究.结果表明,与体硅器件相比,单轴应变硅MOS器件不仅具有较小的热载流子栅电流,而且可靠性也获得提高.同时模型仿真结果与单轴应变硅NMOSFET的实验结果符合较好,验证了该模型的可行性.  相似文献   

13.
Asymmetrical halo and dual-material gate structure are used in the sub-100 nm surrounding-gate metal oxidesemiconductor field effect transistor (MOSFET) to improve the performance. Using three-region parabolic potential distribution and universal boundary condition, analytical surface potential and threshold voltage models of the novel MOSFET are developed based on the solution of Poisson's equation. The performance of the MOS- FET is examined by the analytical models and the 3D numerical device simulator Davinci. It is shown that the novel MOSFET can suppress short channel effect and improve carrier transport efficiency. The derived analytical models agree well with Davinci.  相似文献   

14.
辛艳辉  刘红侠  王树龙  范小娇 《物理学报》2014,63(14):148502-148502
提出了对称三材料双栅应变硅金属氧化物半导体场效应晶体管器件结构,为该器件结构建立了全耗尽条件下的表面势模型、表面场强和阈值电压解析模型,并分析了应变对表面势、表面场强和阈值电压的影响,讨论了三栅长度比率对阈值电压和漏致势垒降低效应的影响,对该结构器件与单材料双栅结构器件的性能进行了对比研究.结果表明,该结构能进一步提高载流子的输运速率,更好地抑制漏致势垒降低效应.适当优化三材料栅的栅长比率,可以增强器件对短沟道效应和漏致势垒降低效应的抑制能力.  相似文献   

15.
李尊朝 《中国物理 B》2008,17(11):4312-4317
Halo structure is added to sub-100 nm surrounding-gate metal-oxide-semiconductor fieldeffect-transistors (MOS- FETs) to suppress short channel effect. This paper develops the analytical surface potential and threshold voltage models based on the solution of Poisson's equation in fully depleted condition for symmetric halo-doped cylindrical surrounding gate MOSFETs. The performance of the halo-doped device is studied and the validity of the analytical models is verified by comparing the analytical results with the simulated data by three dimensional numerical device simulator Davinci. It shows that the halo doping profile exhibits better performance in suppressing threshold voltage roll-off and drain-induced barrier lowering, and increasing carrier transport efficiency. The derived analytical models are in good agreement with Davinci.  相似文献   

16.
随着金属氧化物半导体场效应管(metal-oxide-semiconductor field-effect transistors,MOSFETs)等比缩小迈向45nm技术节点,金属栅极已应用于新型MOSFET器件,改善了与高k栅介质的兼容性,并消除了传统多晶硅栅极的栅耗尽及硼穿透等效应.文章综述了pMOS器件金属栅极材料的发展历程、面临的主要问题以及未来的研究趋势等.  相似文献   

17.
《Current Applied Physics》2015,15(8):938-942
This paper presents an analytical method to compute the surface potential of ballistic metal-oxide semiconductor field-effect transistor (MOSFET)-like carbon-nanotube field-effect transistors (CNFETs). The proposed compact model considers the surface potential as functions of the carbon-nanotube diameter, gate insulator thickness, gate voltage and drain voltage. One of the advantages of this model is that there is no need to refer to the numerical model to recalculate the surface potential each time nanotube diameter or insulator thickness is changed. Instead of using a constant smoothing parameter regardless of the device size and applied bias voltages, a parameter calculated for the specific situations is employed to provide the simulation results with higher accuracy. The validity of the proposed model was verified by comparing the simulated output characteristics of three CNFETs with those of the numerical model and the previous compact model.  相似文献   

18.
王彩琳  孙军 《中国物理 B》2009,18(3):1231-1236
This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, new structure has the smaller input and output capacitances, and the remarkable improvements in the breakdown voltage, on-resistance and switching speed. Furthermore, the SJ in the new structure can be realized by the existing trench etching and shallow angle implantation, which offers more freedom to SJ MOSFET device design and fabrication.  相似文献   

19.
辛艳辉  刘红侠  王树龙  范小娇 《物理学报》2014,63(24):248502-248502
提出了一种堆叠栅介质对称双栅单Halo应变Si金属氧化物半导体场效应管(metal-oxide semiconductor field effect transistor,MOSFET)新器件结构.采用分区的抛物线电势近似法和通用边界条件求解二维泊松方程,建立了全耗尽条件下的表面势和阈值电压的解析模型.该结构的应变硅沟道有两个掺杂区域,和常规双栅器件(均匀掺杂沟道)比较,沟道表面势呈阶梯电势分布,能进一步提高载流子迁移率;探讨了漏源电压对短沟道效应的影响;分析得到阈值电压随缓冲层Ge组分的提高而降低,随堆叠栅介质高k层介电常数的增大而增大,随源端应变硅沟道掺杂浓度的升高而增大,并解释了其物理机理.分析结果表明:该新结构器件能够更好地减小阈值电压漂移,抑制短沟道效应,为纳米领域MOSFET器件设计提供了指导.  相似文献   

20.
马飞  刘红侠  匡潜玮  樊继斌 《中国物理 B》2012,21(5):57304-057304
We investigate the influence of voltage drop across the lightly doped drain(LDD) region and the built-in potential on MOSFETs,and develop a threshold voltage model for high-k gate dielectric MOSFETs with fully overlapped LDD structures by solving the two-dimensional Poisson’s equation in the silicon and gate dielectric layers.The model can predict the fringing-induced barrier lowering effect and the short channel effect.It is also valid for non-LDD MOSFETs.Based on this model,the relationship between threshold voltage roll-off and three parameters,channel length,drain voltage and gate dielectric permittivity,is investigated.Compared with the non-LDD MOSFET,the LDD MOSFET depends slightly on channel length,drain voltage,and gate dielectric permittivity.The model is verified at the end of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号