首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
田华  叶乃清  王建  刘丹 《化学通报》2007,70(11):857-860
以LiNO3、Ni(NO3)2·6H2O、Co(NO3)2·6H2O、Mn(NO3)2、CO(NH2)2为原料,通过低温燃烧法在空气中合成了锂离子正极材料LiNi1/3Mn1/3Co1/3O2.采用XRD研究了合成产物的物相与结构,用SEM研究了合成产物的形貌,考察了点火温度、回火温度,回火时间以及锂过量对合成产物电化学性能的影响.研究结果表明,合成产物与层状LiNiO2的结构相同,属α-NaFeO2型层状结构,合成产物的粒度较小且比较均匀,并具有良好的电化学性能.采用低温燃烧法在空气中合成LiNi1/3Mn1/3Co1/3O2的最佳条件为:500℃点火,850℃回火20h,锂过量为15mol%.在此条件下得到的合成产物首次放电比容量达到158.9mAh/g.  相似文献   

2.
层状LiNi0.5Mn0.5O2正极材料的优化合成及电化学性能   总被引:1,自引:0,他引:1  
闻雷  其鲁  徐国祥 《化学通报》2006,69(4):267-271
采用沉淀法首先得到了Ni0.5Mn0.5(OH)2沉淀物,以其为原料与LiOH反应制备了LiNi0.5Mn0.5O2正极材料。采用XRD、SEM、充放电测试等研究了其结构与电化学性能,同时研究了Li过量时对材料电化学性能和结构的影响。SEM分析表明,Ni0.5Mn0.5(OH)2与LiNi0.5Mn0.5O2产物均为微小晶粒团聚成的颗粒。LiNi0.5Mn0.5O2材料在2.5~4.4V电位区间内,首次放电容量为130mAh/g,0.2C倍率下,50次循环后的容量保持率为87.8%。锂过量有助于形成良好的层状结构材料,并能显著提高材料的比容量和循环性能,Li1.1Ni0.5Mn0.5O2的首次放电容量为149mAh/g,0.2C倍率下,50次循环后的容量保持率为92.6%。  相似文献   

3.
采用低温燃烧法合成了锂离子电池正极材料xLi2MnO3-(1-x)LiNi0.7Co0.3O2,对合成产物的结构、形貌和电化学性能进行了系统的研究,通过单因素试验对合成条件和材料的组成进行了优化。结果表明:采用低温燃烧法合成的富锂层状正极材料具有α-NaFeO2型层状结构、球状形貌和良好的电化学性能;其最佳合成条件为:回火温度850℃,回火时间20 h;Li2MnO3的最佳配比为x=0.7。在此条件下合成的0.7Li2MnO3-0.3LiNi0.7Co0.3O2,最高放电比容量达到263.1 mAh.g-1,并具有良好的循环性能和倍率性能。  相似文献   

4.
使用草酸盐共沉淀法合成了5 V正极材料LiNi0.5Mn1.5O4,研究了不同温度下合成的材料结构形貌与电化学性能之间的关系。结果表明,在900℃下合成的样品电化学性能最好,可逆放电容量达到133.0 mAh?g-1,经30周循环后,容量仍然保持在132.2 mAh?g-1,容量保持率高达99.4%。使用恒电位间歇滴定法(PITT)测定了锂离子在LiNi0.5Mn1.5O4材料中的扩散系数。结果表明,在LiNi0.5Mn1.5O4材料放电过程中,在不同电位嵌锂量不同,发生反应的氧化还原电对也不同,锂离子的扩散系数在不同的电位下也会有差别,扩散系数在10e-10 cm2?s-1~10e-11 cm2?s-1范围内变  相似文献   

5.
万云海  袁国亮  夏晖 《电化学》2012,(3):279-285
高能量密度、功率密度和高温度稳定性的全固态薄膜锂离子电池是微电子器件的理想电源.开发新型的大比容量正极薄膜材料是解决问题的关键之一.与LiCoO2正极相比,层状结构的LiNi0.5Mn0.5O2有更高的可逆比容量和结构稳定性.本文应用脉冲激光沉积法制备LiNi0.5Mn0.5O2沉积薄膜,研究了衬底材料、温度对薄膜的微观结构、表面形貌及组分的影响.由LiNi0.5Mn0.5O2电极组装半电池,研究了薄膜的电化学性能与晶体结构、表面形貌及组分间的关系,表征了LiNi0.5Mn0.5O2沉积薄膜于不同充电截止电压的循环稳定性及倍率性能,并讨论了LiNi0.5Mn0.5O2薄膜的结构特点.  相似文献   

6.
以IANO_3、Ni(NO_3)_2·6H_2O、Mn(NO_3)_2和CO(NH_2)_2为原料,采用低温燃烧法成功合成了5V锂离子电池正极材料LINi_(0.5)Mn_(15)O_4.通过XRD、SEM、循环伏安和恒电流充放电实验对合成样品进行了表征.结果表明,在850℃合成的正极材料LiNi_(0.5)Mn_(1.5)O_4具有立方尖晶石结构,规则的八面体晶形,粒度适中,比较均匀.合成产物具有良好的电化学性能,其充放电电压平稳,放电平台高达4.7V,4V放电平台几乎消失;放电容量达到124.92mAh/g,50次循环后放电容量仍可达到120.84mAh/g.  相似文献   

7.
采用喷雾干燥法合成了LiNi0.5-xAl2xMn1.5-xO4(0≤2x≤0.15)正极材料,研究Al掺杂对LiNi0.5Mn1.5O4材料结构与电化学性能的影响.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子体-原子发射光谱(ICP-AES)、傅里叶红外光谱(FTIR)、循环伏安(CV)和充放电测试等手段对其结构及电化学性能进行表征.结果表明,Al取代Ni和Mn使材料的晶体结构发生了转变,空间群由P4332转变为Fd3m,同时增大了锂离子的扩散速率,提高了材料的倍率性能.在室温下,LiNi0.4 5Al0.1Mn1.45O4表现了最好的倍率性能,当放电电流为0.5 C时,放电容量为126 mA.h/g,当放电电流增加到5 C时,放电容量为109 mA.h/g,保持率达到了87%.此外,Al取代Ni和Mn有效降低了材料在高温下的Mn溶解量,从而有效改善了材料在高温大倍率下的循环性能.LiNi0.45Al0.1Mn1.45O4材料在50℃,倍率为3 C时,放电容量为121.7mA.h/g,循环50次后,仍可保留初始容量的94%.  相似文献   

8.
用高分子分散及微波-固相复合加热技术合成了层状锂离子电池正极材料LiNi0.5Co0.5O2. 采用循环伏安、充放电循环、扫描电子显微镜(SEM)以及X射线粉末衍射(XRD)等测试技术, 研究了煅烧条件对材料微观形貌、相结构以及电化学性能的影响规律. 研究结果表明: 在750 ℃煅烧4 h即可得到形状为类球形的纯相层状LiNi0.5Co0.5O2正极材料, 该材料的最大放电容量达到154 mA·h/g, 循环10周后放电容量仍保持在148 mA·h/g以上.  相似文献   

9.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2, 并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响. 采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌. 使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能. 结果表明, pH为7.0时, 合成的材料颗粒更小、分布最均匀, 材料具有良好的层状特征, 且材料中锂镍的混排程度最小. 电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能, 在0.1C的倍率下, 材料的首次放电比容量达到了185 mAh·g-1, 在循环20周后, 放电比容量仍然保持在160 mAh·g-1. X射线光电子能谱(XPS)测试结果表明, pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价, Mn为+4价.  相似文献   

10.
锰源对燃烧法制备5V级正极材料LiNi0.5Mn1.5O4的影响   总被引:1,自引:1,他引:0  
以硝酸锰和醋酸锰,采用蔗糖燃烧法制备锂离子电池正极材料LiNi0.5Mn1.5O4通过XRD、SEM、粒径分布测试、循环伏安、恒流充放电测试以及交流阻抗等方法,研究了醋酸锰和硝酸锰对产物的结构、形貌、粒径及电化学性能的影响。XRD测试结果表明样品的结构都为立方尖晶石型,属于Fd3m空间群。不同的锰源对材料的粒径及粒径分布有很大的影响。以醋酸锰为原料制得的材料的粒径较小并且分布更均匀,有利于锂离子的脱出和嵌入从而提高电化学性能。以醋酸锰为锰源制得的LiNi0.5Mn1.5O4在3.6~5.2 V的充放电电压范围内的电化学性能更好,1C(1C=140.0 mA.g-1)倍率的首次放电容量为144.5 mAh.g-1,循环100周后容量保持率为96%,在3C,5C,10C以及20C的放电容量分别为136.3,132.0,124.7以及96.6 mAh.g-1。  相似文献   

11.
采用高温固相反应,以NH4VO3为钒源合成了化学计量式为(1-x)LiFe0.5Mn0.5PO4-xLi3V2(PO4)3/C(x=0,0.1,0.2,0.25,1)的钒改性磷酸锰铁锂正极材料.电化学测试表明钒改性能明显提高磷酸锰铁锂材料的充放电性能,其中x=0.2时得到的0.8LiFe0.5Mn0.5PO4-0.2Li3V2(PO4)3/C(标记为LFMP-LVP/C)材料电化学性能最好,其0.1C倍率时的放电比容量为141mAh·g-1.X射线衍射(XRD)分析指出LFMP-LVP/C材料的微观结构为橄榄石型LiFe0.5Mn0.5PO4/C和NASICON型Li3V2(PO4)3组成的双相结构.能量色射X射线谱(EDS)分析结果指出,Fe、Mn、V、P元素在所合成材料中的分布非常均匀,表明所制备材料成分的均一性.Li3V2(PO4)3改性使材料的电导率明显提高.LiFe0.5Mn0.5PO4的电导率为1.9×10-8S·cm-1,而LFMP-LVP材料电导率提高到2.7×10-7S·cm-1.与纯Li3V2(PO4)3的电导率(2.3×10-7S·cm-1)相近.电化学测试表明钒改性使LFMP-LVP/C材料充放电过程电极极化明显减小,从而电化学性能得到显著提高.本文工作表明Li3V2(PO4)3改性可成为提高橄榄石型磷酸盐锂离子电池正极材料电化学性能的一种有效方法.  相似文献   

12.
以过渡金属乙酸盐和乙酸锂为原料,柠檬酸为螯合剂,通过溶胶-凝胶法结合高温煅烧法制备了锂离子电池富锂锰基正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2,采用X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌及电化学性能进行了表征.结果表明:x=0.5时,在900°C下煅烧12h得到颗粒均匀细小的层状xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2材料,并具有良好的电化学性能,在室温下以20mA·g-1的电流密度充放电,2.0-4.8V电位范围内首次放电比容量高达260.0mAh·g-1,循环40次后放电比容量为244.7mAh·g-1,容量保持率为94.12%.  相似文献   

13.
采用共沉淀-高温固相烧结法合成了富镍型三元复合正极材料LiNi0.5Co0.2Mn0.3O2.恒流充放电测试表明,材料在3.0~4.4 V下0.2C放电容量达到179.2 mAh.g-1,但在55℃下经历100次充放电循环后发生急剧的容量衰减.电化学交流阻抗谱、X射线光电子能谱和原子发射光谱等实验表明,在高温高电压下,电解液与LiNi0.5Co0.2Mn0.3O2电极材料之间的副反应加剧,导致过渡金属原子溶出,该材料局域结构被破坏.同时,电极材料表面还沉积了高阻抗的LiF/MFx层,使得在电极的充放电过程中电荷转移阻抗和Li+扩散阻抗不断增加,以致电池容量急剧衰减.  相似文献   

14.
应用柠檬酸辅助溶胶-凝胶法.合成了Y3+掺杂的尖晶石LiNi0.49Mn1.49Y0.02O4材料.XRD、循环伏安、恒流充放电和交流阻抗测试结果表明,Y3+的掺杂能提高LiNi0.5Mn1.5O4的倍率和循环性能.在电压区间3.5~4.9V,1C倍率下,其初始放电比容量为114.9 mAh.g-1,100次循环后放电比容量仍可达113.0 mAh.g-1,容量保持率为98.3%.掺杂Y3+能减小材料界面阻抗.  相似文献   

15.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05)正极材料. 循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V, 电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266 Ω减小到102 Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定, 其第二周的放电比容量为176.2 mAh·g-1, 循环100周后容量几乎没衰减; 高温(55 °C)下充放电循环100周, 其放电比容量平均每周仅衰减0.20%, 远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%; Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1, 高于其他两种正极材料. 电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗, 增大了锂离子扩散系数.  相似文献   

16.
利用V2O5、LiOH·H2O、H2O2、NH4H2PO4与柠檬酸为原料,通过溶胶-凝胶法合成了碳包覆的Li3V2(PO4)3复合正极材料。采用XPS、XRD、SEM、TEM、拉曼光谱和电化学方法对材料的性能进行了研究。还研究了其结构与焙烧温度、样品电导率和电化学性能的关系。研究表明复合材料具有空间群为P21/n的单斜结构,表面包覆粗糙多孔的碳层。在800 ℃下制备的碳包覆样品的电子导电率高达9.81×10-5 S·cm-1,约为高温固相氢气还原法制备的未包覆碳Li3V2(PO4)3的10000倍。测试结果表明碳包覆Li3V2(PO4)3的电化学性能远优于未包覆碳的样品。在3.0~4.3 V电压范围内,以0.1C和2C倍率充放电时,碳包覆的Li3V2(PO4)3具有高比容量(分别为128和109 mAh·g-1)和优异的循环性能。  相似文献   

17.
单斜Li3V2(PO4)3/C复合材料的制备及其电化学性能   总被引:1,自引:0,他引:1  
以LiOH·H2O、V2O5、H3PO4和蔗糖为原料,采用软化学法制备了锂离子电池正极材料Li3V2(PO4)3/C.通过X射线衍射(XRD)、扫描电镜(SEM)对产物的结构和形貌进行表征,采用恒电流充放电、电化学阻抗考察了产物的电化学性能.结果表明.当煅烧温度达到700℃时,杂质相衍射峰消失,所得的样品为纯相的单斜Li3V2(PO4)3.颗粒粒度为1~2 μm;在3.0~4.5 V电压范围内以0.2C倍率充放电,首次放电比容量达到148.2 mAh·g-1,第50次循环比容量仍为144 mAh·g-1,容量保持率为97%,具有良好的循环性能;另外,样品还具有很好的倍率性能和高温性能.  相似文献   

18.
以聚丙烯酰胺(PAM)为分散剂用微波—固相复合加热技术合成了层状锂离子电池正极材料LiNi0.5C0.5O2。通过扫描电子显微镜(SEM)和X—射线粉末衍射(XRD)分析技术对材料的微观形貌和相结构进行了表征。恒电流充放电循环测试表明:材料的放电比容量高达154mAh/g,且有良好的循环性能。重点利用循环扫描伏安、计时电量和电化学交流阻抗测试技术,对材料在循环前后的电化学性能变化规律进行了探讨。结果表明,经过循环后材料的导电能力以及锂离子扩散能力都有了很大的提高。另外,材料中的锂含量对材料的导电能力也有很大的影响。  相似文献   

19.
通过调整不同配锂量、不同焙烧温度以及包覆改性对高镍无钴二元材料性能的影响因素进行了研究。对不同原样和其改性后的材料进行了X射线粉末衍射(XRD)分析和首次充放电性能和倍率性能、循环性能等电化学性能测试。其中过锂量(质量分数)为5%,焙烧温度为820℃的材料性能优异,其首次放电比容量为171.6 mAh·g^-1,1C和3C的放电比容量分别为147.8、129.8 mAh·g^-1。对材料进行锰化合物(质量分数1.0%)包覆处理后,材料的残碱量下降明显,加工性能优异,倍率性能得到明显改善,1C和3C的放电比容量分别提升为156.5、141.8 mAh·g^-1。2Ah软包电池常温循环830周容量保持率为80%,高温循环345周容量保持率为80%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号