首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   7篇
化学   7篇
  2017年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li2MnO3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li2MnO3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li2Mn0.9Ti0.03O3的首圈放电比容量达到209 mAh·g-1,库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 mA·g-1时,掺杂改性的样品仍然可以放出120 mAh·g-1比容量,远高于同等电流密度下未掺杂的Li2MnO3原粉的比容量(52 mAh·g-1)。Ti掺杂可有效地改善Li2MnO3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   
2.
将氢氧化物共沉淀法制备的(Ni1/3Co1/3Mn1/3)(OH)2在500℃热处理5 h得到具有尖晶石结构、纳米尺寸的氧化物M3O4(M=Ni1/3Co1/3Mn1/3).将其与LiOH及不同量的纳米MgO混合均匀,并在850℃热处理24 h制备了Li(Ni1/3Co1/3Mn1/3)1/xMgxO2(x=0,0.01,0.02,0.03,0.04,0.05)正极村料.随着Mg掺杂量的增大,正极材料的晶胞参数增大;少量的Mg掺杂增大了锂离子的扩散系数,而过度掺杂却使锂离子扩散系数有所降低,其中Li(Ni1/3Co1/3Mn1/3)0.98Mg0.02O2的锂离子扩散系数最大,其脱出和嵌入扩散系数分别为DLi-dein=29.20×10-11cm2·S-1和DLi-in=4.760×10-11cm2·s-1;其以3C倍率充放电的平均放电比容量为139.3 mAh·g-1,比未掺杂的原粉约高9.5 mAh·g-1;另外其循环性能也得到了大幅度改善.  相似文献   
3.
采用表面掺杂包覆改性的方法对LiMn2O4尖晶石型锂离子电池正极材料进行改性.以Al为表面掺杂元素,Al(NO3)3为原料,研究了Al3+掺杂量为7.1%(原子分数)时不同温度(300、400、500、600、700、750、800℃)下的改性效果.研究发现,随着热处理温度的升高,改性样品的最大比容量先升高后降低,在700℃达到最大值;循环衰减先增大后降低再增大;这是由于随着热处理温度的升高,包覆层逐渐分解并与LiMn2O4颗粒反应固溶,在750℃完全固溶,衰减达到极小值,而后固溶层向颗粒内部扩散,导致包覆层对颗粒免受电解液溶解的保护能力变弱,因而容量衰减增大.其中700℃热处理5h的样品最大比容量为133.6mAh·g-1,循环50周衰减3.4%.研究表明Al3+表面掺杂包覆改性有利于促进LiMn2O4尖晶石型锂离子电池正极材料的商业化生产,具有大规模应用的前景.  相似文献   
4.
使用Ge4+、Sn4+作为掺杂离子, 通过高温固相法制备四价阳离子掺杂改性的尖晶石LiMn2O4材料. X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明, Ge4+离子取代尖晶石中Mn4+离子形成了LiMn2-xGexO4 (x=0.02,0.04, 0.06)固溶体; 而Sn4+离子则以SnO2的形式存在于尖晶石LiMn2O4的颗粒表面. Ge4+离子掺入到尖晶石LiMn2O4材料中, 抑制了锂离子在尖晶石中的有序化排列, 提高了尖晶石LiMn2O4的结构稳定性; 而在尖晶石颗粒表面的SnO2可以减少电解液中酸的含量, 抑制酸对LiMn2O4活性材料的侵蚀. 恒电流充放电测试表明, 两种离子改性后材料的容量保持率均有较大幅度的提升, 有利于促进尖晶石型LiMn2O4锂离子电池正极材料的商业化生产.  相似文献   
5.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05)正极材料. 循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V, 电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266 Ω减小到102 Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定, 其第二周的放电比容量为176.2 mAh·g-1, 循环100周后容量几乎没衰减; 高温(55 °C)下充放电循环100周, 其放电比容量平均每周仅衰减0.20%, 远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%; Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1, 高于其他两种正极材料. 电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗, 增大了锂离子扩散系数.  相似文献   
6.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)正极材料.循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V,电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266Ω减小到102Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到2.54×10-11 cm2· s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定,其第二周的放电比容量为176.2 mAh·g-1,室温下循环100周后容量几乎没衰减;高温(55°C)下充放电循环100周,其放电比容量平均每周仅衰减0.20%,远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%;Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1,高于其他两种正极材料.电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗,增大了锂离子扩散系数  相似文献   
7.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li_2MnO_3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li_2MnO_3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li_2Mn_(0.97)Ti_(0.03)O_3的首圈放电比容量达到209 m Ah·g~(-1),库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 m A·g~(-1)时,掺杂改性的样品仍然可以放出120 m Ah·g~(-1)比容量,远高于同等电流密度下未掺杂的Li_2MnO_3原粉的比容量(52 m Ah·g~(-1))。Ti掺杂可有效地改善Li_2MnO_3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号