首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
称X∈R~(m×n)为实(R,S)对称矩阵,若满足X=RXS,其中R∈R~(m×m)和S∈R~(n×n)为非平凡实对合矩阵,即R=R~(-1)≠±I_m,S=S~(-1)≠±I_n.该文将优化理论中求凸集上光滑函数最小值的增广Lagrangian方法应用于求解矩阵不等式约束下实(R,S)对称矩阵最小二乘问题,即给定正整数m,n,p,t,q和矩阵A_i∈R~(m×m),B_i∈R~(n×n)(i=1,2,…,q),C∈R~(m×m),E∈R~(p×m),F∈R~(n×t)和D∈R~(p×t),求实(R,S)对称矩阵X∈R~(m×m)且在满足相容矩阵不等式EXF≥D约束下极小化‖∑_(i=1)~qA_iXB_i-C‖,其中EXF≥D表示矩阵EXF-D非负,‖·‖为Frobenius范数.该文给出求解问题的矩阵形式增广Lagrangian方法的迭代格式,并用数值算例验证该方法是可行且高效的.  相似文献   

2.
称X∈R^(m×n)为实(R,S)对称矩阵,若满足X=RXS,其中R∈R^(m×m)和S∈R^(n×n)为非平凡实对合矩阵,即R=R^(-1)≠±I_m,S=S^(-1)≠±I_n.该文将优化理论中求凸集上光滑函数最小值的增广Lagrangian方法应用于求解矩阵不等式约束下实(R,S)对称矩阵最小二乘问题,即给定正整数m,n,p,t,q和矩阵A_i∈R^(m×m),B_i∈R^(n×n)(i=1,2,…,q),C∈R^(m×m),E∈R^(p×m),F∈R^(n×t)和D∈R^(p×t),求实(R,S)对称矩阵X∈R^(m×m)且在满足相容矩阵不等式EXF≥D约束下极小化‖∑_(i=1)~qA_iXB_i-C‖,其中EXF≥D表示矩阵EXF-D非负,‖·‖为Frobenius范数.该文给出求解问题的矩阵形式增广Lagrangian方法的迭代格式,并用数值算例验证该方法是可行且高效的.  相似文献   

3.
陈小山  黎稳 《计算数学》2007,29(4):433-438
考虑如下结构线性方程组(A B C 0)(x y)=(a b),其中A∈R~(m×m),B∈R~(m×n),C∈R~(n×m).本文给出该类结构方程组的结构向后扰动误差的显式表达式.数值例子表明求解该类问题稳定的算法得到的解不必是强稳定的.  相似文献   

4.
对称正交矩阵反问题及其最佳逼近   总被引:6,自引:1,他引:5  
孟纯军  胡锡炎 《计算数学》2006,28(3):269-280
本文主要讨论下面两个问题:问题Ⅰ:给定矩阵X,B∈R~(m×n),求对称正交矩阵A∈SOR~(m×m),使得AX=B.问题Ⅱ:给定矩阵(?)∈R~(m×m),求矩阵A~*∈S_E使得(?)这里S_E问题Ⅰ的解集合,‖·‖指Frobenius范数.本文首先讨论具有k阶对称主子阵的n(n>k)阶正交矩阵的C-S分解,利用这个结果,得到了问题Ⅰ有解的充要条件和通解的一般形式.然后,对给定矩阵(?)∈R~(m×m),讨论了矩阵(?)在问题Ⅰ的解集合S_E中的最佳逼近,得到了最佳逼近解的表达式.  相似文献   

5.
1引言令R~(n×m)、OR~(n×n)、SR~(n×n)(SR_0~(n×n))分别表示所有n×m阶实矩阵、n阶实正交阵、n阶实对称矩阵(实对称半正定阵)的全体,A~ 表示A的Moore-Penrose广义逆,I_k表示k阶单位矩阵,S_k表示k阶反序单位矩阵。R(A)表示A的列空间,N(A)表示A的零空间,rank(A)表示矩阵A的秩。对A=(a_(ij)),B=(b_(ij))∈R~(n×m),A*B表示A与  相似文献   

6.
本文研究了半张量积下矩阵方程组AX=B,XC=D在不同情况下的最小二乘解X*∈R~(p×q),其中矩阵A∈R~(m×n),B∈R~(h×k),C∈R~(a×b),D∈R~(l×d)给定.根据半张量积的定义将其转变为普通乘积下的矩阵方程组,再结合矩阵奇异值分解及矩阵微分给出该方程组在不同情况下最小二乘解的解析表达式,并用数值算例加以验证.  相似文献   

7.
矩阵方程AXB+CYD=E对称最小范数最小二乘解的极小残差法   总被引:1,自引:0,他引:1  
<正>1引言本文用R~(n×m)表示全体n×m实矩阵集合,用SR~(n×n)表示全体n×n实对称矩阵集合,OR~(n×n)表示全体n×n实正交矩阵集合.用I_n表示n阶单位矩阵,用A*B表示矩阵A与B的Hadamard乘积.对任意矩阵A,B∈R~(n×m),定义内积〈A,B〉=tr(B~T A),其中  相似文献   

8.
线性流形上对称正交反对称矩阵反问题的最小二乘解   总被引:1,自引:0,他引:1  
设P是n阶对称正交矩阵,如果n阶矩阵A满足AT=A和(PA)T=-PA,则称A为对称正交反对称矩阵,所有n阶对称正交反对称矩阵的全体记为SARnp.令S={A∈SARnp f(A)=‖AX-B‖=m in,X,B〗∈Rn×m本文讨论了下面两个问题问题Ⅰ给定C∈Rn×p,D∈Rp×p,求A∈S使得CTAC=D问题Ⅱ已知A~∈Rn×n,求A∧∈SE使得‖A~-A∧‖=m inA∈SE‖A~-A‖其中SE是问题Ⅰ的解集合.文中给出了问题Ⅰ有解的充要条件及其通解表达式.进而,指出了集合SE非空时,问题Ⅱ存在唯一解,并给出了解的表达式,从而得到了求解A∧的数值算法.  相似文献   

9.
研究线性矩阵方程AXB=C在闭凸集合R约束下的数值迭代解法.所考虑的闭凸集合R为(1)有界矩阵集合,(2)Q-正定矩阵集合和(3)矩阵不等式解集合.构造松弛交替投影算法求解上述问题,并用算子理论证明了由该算法生成的序列具有弱收敛性.给出了矩阵方程AXB=C求对称非负解和对称半正定解的数值算例,大量数值实验验证了该算法的可行性和高效性,并说明该算法与交替投影算法和谱投影梯度算法比较在迭代效率上的明显优势.  相似文献   

10.
<正>1引言考虑如下Sylvester方程:AX+XB=F(1)这里A∈C~(m×m),B∈C~(n×n),F∈C~(m×n)是复数矩阵.令A=W+iT,B=U+iV,Q,T∈R~(m×m),U,V∈R~(n×n)都是实对称矩阵,且W,U是不定的,T,V是正定的.我们假定-TW≤T,-VU≤V.对于任意矩阵W和T,WT(W≤T)意味着T-W是  相似文献   

11.
Let R ∈ Cn×n be a nontrivial involution, i.e., R2 = I and R ≠ ±I. A matrix A ∈ Cn×n is called R-skew symmetric if RAR = −A. The least-squares solutions of the matrix inverse problem for R-skew symmetric matrices with R∗ = R are firstly derived, then the solvability conditions and the solutions of the matrix inverse problem for R-skew symmetric matrices with R∗ = R are given. The solutions of the corresponding optimal approximation problem with R∗ = R for R-skew symmetric matrices are also derived. At last an algorithm for the optimal approximation problem is given. It can be seen that we extend our previous results [G.X. Huang, F. Yin, Matrix inverse problem and its optimal approximation problem for R-symmetric matrices, Appl. Math. Comput. 189 (2007) 482-489] and the results proposed by Zhou et al. [F.Z. Zhou, L. Zhang, X.Y. Hu, Least-square solutions for inverse problem of centrosymmetric matrices, Comput. Math. Appl. 45 (2003) 1581-1589].  相似文献   

12.
We apply Dykstra's alternating projection algorithm to the constrained least-squares matrix problem that arises naturally in statistics and mathematical economics. In particular, we are concerned with the problem of finding the closest symmetric positive definite bounded and patterned matrix, in the Frobenius norm, to a given matrix. In this work, we state the problem as the minimization of a convex function over the intersection of a finite collection of closed and convex sets in the vector space of square matrices. We present iterative schemes that exploit the geometry of the problem, and for which we establish convergence to the unique solution. Finally, we present preliminary numberical results to illustrate the performance of the proposed iterative methods.  相似文献   

13.
The linear complementarity problem (M|q) is to findw andz inR n such thatwMz=q,w0,z0,w t z=0, givenM inR n×n andq in . Murty's Bard-type algorithm for solving LCP is modeled as a digraph.Murty's original convergence proof considered allq inR n andM inR n×n , aP-matrix. We show how to solve more LCP's by restricting the set ofq vectors and enlarging the class ofM matrices beyondP-matrices. The effect is that the graph contains an embedded graph of the type considered by Stickney and Watson wheneverM is a matrix containing a principal submatrix which is aP-matrix. Examples are presented which show what can happen when the hypotheses are further weakened.  相似文献   

14.
In this paper, we are mainly concerned with 2 types of constrained matrix equation problems of the form AXB=C, the least squares problem and the optimal approximation problem, and we consider several constraint matrices, such as general Toeplitz matrices, upper triangular Toeplitz matrices, lower triangular Toeplitz matrices, symmetric Toeplitz matrices, and Hankel matrices. In the first problem, owing to the special structure of the constraint matrix , we construct special algorithms; necessary and sufficient conditions are obtained about the existence and uniqueness for the solutions. In the second problem, we use von Neumann alternating projection algorithm to obtain the solutions of problem. Then we give 2 numerical examples to demonstrate the effectiveness of the algorithms.  相似文献   

15.
A unified treatment is given for iterative algorithms for the solution of the symmetric linear complementarity problem: $$Mx + q \geqslant 0, x \geqslant 0, x^T (Mx + q) = 0$$ , whereM is a givenn×n symmetric real matrix andq is a givenn×1 vector. A general algorithm is proposed in which relaxation may be performed both before and after projection on the nonnegative orthant. The algorithm includes, as special cases, extensions of the Jacobi, Gauss-Seidel, and nonsymmetric and symmetric successive over-relaxation methods for solving the symmetric linear complementarity problem. It is shown first that any accumulation point of the iterates generated by the general algorithm solves the linear complementarity problem. It is then shown that a class of matrices, for which the existence of an accumulation point that solves the linear complementarity problem is guaranteed, includes symmetric copositive plus matrices which satisfy a qualification of the type: $$Mx + q > 0 for some x in R^n $$ . Also included are symmetric positive-semidefinite matrices satisfying this qualification, symmetric, strictly copositive matrices, and symmetric positive matrices. Furthermore, whenM is symmetric, copositive plus, and has nonzero principal subdeterminants, it is shown that the entire sequence of iterates converges to a solution of the linear complementarity problem.  相似文献   

16.
The QR algorithm is one of the classical methods to compute the eigendecomposition of a matrix. If it is applied on a dense n × n matrix, this algorithm requires O(n3) operations per iteration step. To reduce this complexity for a symmetric matrix to O(n), the original matrix is first reduced to tridiagonal form using orthogonal similarity transformations. In the report (Report TW360, May 2003) a reduction from a symmetric matrix into a similar semiseparable one is described. In this paper a QR algorithm to compute the eigenvalues of semiseparable matrices is designed where each iteration step requires O(n) operations. Hence, combined with the reduction to semiseparable form, the eigenvalues of symmetric matrices can be computed via intermediate semiseparable matrices, instead of tridiagonal ones. The eigenvectors of the intermediate semiseparable matrix will be computed by applying inverse iteration to this matrix. This will be achieved by using an O(n) system solver, for semiseparable matrices. A combination of the previous steps leads to an algorithm for computing the eigenvalue decompositions of semiseparable matrices. Combined with the reduction of a symmetric matrix towards semiseparable form, this algorithm can also be used to calculate the eigenvalue decomposition of symmetric matrices. The presented algorithm has the same order of complexity as the tridiagonal approach, but has larger lower order terms. Numerical experiments illustrate the complexity and the numerical accuracy of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A∈Rn×nARn×n. We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized {2,3}{2,3} and {2,4}{2,4} inverses. Introduced algorithms are not harder than the matrix–matrix multiplication.  相似文献   

18.
Convergence is established for iterative algorithms for the solution of the nonsymmetric linear complementarity problem of findingz such thatMz+q0,z0,z T(Mz+q)=0, whereM is a givenn×n real matrix, not necessarily symmeetric, andq is a givenn-vector. It is first shown that, if the spectral radius of a matrix related toM is less than one, then the iterates generated by the general algorithm converge to a solution of the linear complementarity problem. It turns out that convergence properties are quite similar to those of linear systems of equations. As specific cases, two important classes of matrices, Minkowski matrices and quasi-dominant diagonal matrices, are shown to satisfy this convergence condition.The author is grateful to Professor O. L. Mangasarian and the referees for their substantive suggestions and corrections.  相似文献   

19.
Recent progress in signal processing and estimation has generated considerable interest in the problem of computing the smallest eigenvalue of a symmetric positive‐definite (SPD) Toeplitz matrix. An algorithm for computing upper and lower bounds to the smallest eigenvalue of a SPD Toeplitz matrix has been recently derived (Linear Algebra Appl. 2007; DOI: 10.1016/j.laa.2007.05.008 ). The algorithm relies on the computation of the R factor of the QR factorization of the Toeplitz matrix and the inverse of R. The simultaneous computation of R and R?1 is efficiently accomplished by the generalized Schur algorithm. In this paper, exploiting the properties of the latter algorithm, a numerical method to compute the smallest eigenvalue and the corresponding eigenvector of SPD Toeplitz matrices in an accurate way is proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In computer graphics, in the radiosity context, a linear system Φx=b must be solved and there exists a diagonal positive matrix H such that H Φ is symmetric. In this article, we extend this property to complex matrices: we are interested in matrices which lead to Hermitian matrices under premultiplication by a Hermitian positive‐definite matrix H. We shall prove that these matrices are self‐adjoint with respect to a particular innerproduct defined on ?n. As a result, like Hermitian matrices, they have real eigenvalues and they are diagonalizable. We shall also show how to extend the Courant–Fisher theorem to this class of matrices. Finally, we shall give a new preconditioning matrix which really improves the convergence speed of the conjugate gradient method used for solving the radiosity problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号