首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
研究了复合物Mg-NCSCH3在230~440 nm波段和Ca-NCSCH3在320~560 nm波段的光解离光谱. 复合物Mg-NCSCH3, Ca-NCSCH3光诱导反应的产物质谱表明有非反应猝灭产物Mg(Ca), C—S键断裂产物Mg(Ca)NC 和Mg(Ca)NCS以及重排反应产物Mg(Ca)-CHSH通道. 在原子跃迁谱线(32S→32P, 对于Mg; 42S?42P, 对于Ca)的红和蓝两边, Mg-NCSCH3的光解离光谱由两个宽峰组成; 而对于Ca-NCSCH3, 则是由三个谱峰构成. CIS/6-311++G**等级上, 对应于基态构型的Mg-NCSCH3电子态跃迁能量和振子强度与实验光谱较为一致; 而Ca-NCSCH3有较大的差别. 这是因为CIS方法忽略电子相关效应, 而Ca-based的跃迁中3d和4s轨道间存在较强的混合所致.  相似文献   

2.
观察了复合物Mg+-NCSCH3在230~440 nm范围的光解离光谱. 在此波段内的复合物光诱导产物的质谱显示, 存在着非反应猝灭产物Mg+和反应产物Mg+NC、Mg+NCS. 反应产物来源于S-C化学键的断裂. 复合物的光解离光谱由两个对应于原子Mg+(32P←32S)跃迁的宽峰构成. 由量化计算中的CIS方法所获得的吸收谱理论值与实验值吻合较好.  相似文献   

3.
武海顺  张竹霞 《化学学报》2005,63(11):973-978
采用B3LYP/6-31G*方法, 对内含式化合物X@Al12P12 (X=Li0/+, Na0/+, K0/+, Be0/2+, Mg0/2+, Ca0/2+, H和He)的不同对称性构型进行计算, 讨论其最稳定构型的几何参数、布居分析、偶极矩、电离势、包含能、频率、HOMO-LUMO能隙和自旋密度.发现X@Al12P12化合物中, 客体X=Na0/+, K0/+, Mg和He几乎处在笼的中心, Be和Ca0/2+处在中心附近0.033 nm的半径内, Li0/+, Be2+, Mg2+和H很大程度上偏离笼的中心位置. 大部分金属内含式化合物的C3对称性构型稳定.Li0/+, Be0/2+, Mg2+, Ca2+和H与其它离子相比更易嵌入笼内形成稳定的内含式化合物.  相似文献   

4.
采用等温溶解平衡法研究了五元体系Na, K, Mg2+//Cl, NO3-H2O在298.16 K、氯化钠饱和时各盐的溶解度和饱和溶液的物化性质(密度, 电导率)以及四元体系Na, Mg2+//Cl, NO3-H2O的相平衡关系. 研究表明: 在298.16 K, 氯化钠饱和时该五元体系溶解度相图由六个结晶区、九条单变量溶解度曲线和四个零变量点构成, 六个结晶区分别对应于NaNO3+NaCl, KNO3+NaCl, KCl+NaCl, Mg(NO3)2•6H2O+NaCl, MgCl2•6H2O+NaCl和复盐KCl•MgCl2•6H2O+NaCl; 在298.16 K时, 该四元体系的相图由四个结晶区、五条单变量溶解度曲线和二个零变量点构成, 四个结晶区分别对应于NaNO3, NaCl, Mg(NO3)2•6H2O, MgCl2•6H2O.  相似文献   

5.
侯春园  郑清川  舒鑫  张红星 《化学学报》2007,65(18):1947-1950
Cs对称性和aug-cc-pVTZ基组水平下, 采用全活化空间自洽场方法(CASSCF)研究了CH3O2自由基基态及其阴阳离子的12个低激发态. 为了进一步考虑动态电子相关效应, 采用二级多组态微扰理论(CASPT2)获得更加精确的能量值. 所有计算得到的电子态都是价电子态, 而且所得绝热激发能和电子亲和势与实验值非常接近.在CASPT2//CASSCF理论水平下计算了CH3O22A"和2A'电子态的CH3O2→CH3+O2的解离反应的势能曲线(PECs). 优化得到的裂解产物的几何结构和能量与分别优化CH3和O2得到的结果进行比较, 从而确定裂解产物的电子态. 结果表明, 从2A"和2A'电子态的解离反应分别对应产物CH3(2A")+O2(3A")和CH3(2A")+O2(1A").  相似文献   

6.
研究了230~440 nm波段复合物Mg+-S2(CH3)2的单光子光诱导反应. 复合物光诱导产物的质谱揭示, 存在着非反应猝灭产物Mg+和反应产物Mg+SCH3. 复合物的光解离光谱由三个对应于离子Mg+(32P←32S)跃迁的宽谱峰构成. 用量化计算中的CIS方法所得的吸收谱理论值与实验值吻合较好.  相似文献   

7.
[Pb2(TNR)(NO3)2(H2O)] was prepared by reaction of the aqueous solution of lead nitrate and magnesium styphnate. The crystal structure of Pb2(TNR)(NO3)2(H2O)was determined by single crystal diffraction analysis. The crystal is triclinic, space group P1 with crystal parameters a=0.7279(2)nm,b=1.0698(2)nm,c=1.0738(2)nm;α=86.82(1)°,β=89.52(2)°,γ=83.50(2)°;V=0.8295(3)nm3,Z=2,Dc=3.201g·cm-3, F(000)=716. The final R value is 0.0358.In the crystal structure, one lead ion was represented by nine coor-dination geometry; the other was showed as ten coordination geometry.  相似文献   

8.
使用反射式飞行时间质谱仪, 研究了Ca+-叔丁胺络合物在激光诱导下的反应. 得到了反应的光解谱和作为波长函数的光解行为光谱以及各反应通道的分支比. 反应有两个通道, Ca+-与分子的解离通道和生成产物Ca+-NH2的反应通道, Ca+-是主要产物, 而且在整个激光扫描的范围都存在, 并且在530~595 nm波段是唯一的产物. 反应的光解行为光谱显示出明显的无结构的峰, 分别对应于络合物的跃迁. 结合反应通道的分支比以及量化计算, 对这些峰进行了指认, 并初步探讨了反应的动力学机理.  相似文献   

9.
采用具有白磷钙矿结构的磷酸盐作为目标产物,通过高温固相法制备了发光颜色可调的 Ca8MgBi(PO4)7∶Ce3+,Tb3+荧光粉。利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱等表征手段对其物相组成、微观形貌及发光性能进行了详细研究。结果表明:掺杂少量的 Ce3+、Tb3+并没有改变 Ca8MgBi(PO4)7基质的晶体结构。荧光光谱和荧光寿命曲线确定了 Ce3+-Tb3+之间存在能量传递,其能量传递机制为四极-四极相互作用,能量传递效率可达 81%。固定 Ce3+浓度而逐渐增加 Tb3+的掺杂量时,系列Ca8MgBi(PO4)7∶0.08Ce3+,yTb3+荧光粉的发光颜色可由蓝光调至绿光,从而实现发光颜色的可控化。  相似文献   

10.
用Co2(CO)8分别与两个杂环配体C(S)NHP(S)(C6H4OCH3)OC(Ph)CH (L1)和C(S)NHC(CH3)2P(S)(Cl)N(Ph) (L2)反应,合成两个新的三核钴羰基硫簇合物Co3(CO)73-S)[μ,η2-CNP(S)(C6H4OCH3)OC(Ph)CH]()和Co3(CO)73-S)[μ,η2-SCNC(CH3)2P(S)(Cl)N(Ph)]()。用元素分析,IR, 1H NMR, 31P NMR及MS谱表征了它们的结构,同时用X射线衍射法测定了它们的晶体分子结构,二者属于三斜晶系,空间群P1,的晶胞参数为:a=0.84768(1)nm,b=1.19049(3)nm,c=1.43639(1)nm,α=86.926(1)°,β=81.601(3)°,γ=88.535(2)°,V=1.4318(5)nm3,Z=2,Dc=1.641g·cm-3,F(000)=716,μ=1.893mm-1,R=0.0602,Rw=0.1515。的晶胞参数为:a=1.2050(2)nm,b=1.2448(2)nm,c=0.8951(2)nm,α=97.49(1)°,β=93.552(4)°,γ=108.432(3)°,V=1.2554(3)nm3,Z=2,Dc=1.841g·cm-3,F(000)=690,μ=2.419mm-1,R=0.0423,Rw=0.1075。的分子骨架Co3S为三角锥构型,S作为面桥基配体,所有CO作为端基配体与三个Co原子成键。中含有CoCoCN四元环组件,中含有CoCoSCN五元环组件。  相似文献   

11.
The results of ab initio molecular orbital calculations for [CrOfs]2? and polarised single crystal electronic spectra of [MoOCl3(Op(NMe2)3)2] and Ph4As[MoOCl4(H2O)] are presented. These data are consistent with the electronic transitions of the MO3+ moieties, O2pπ → Mdxy and Mdxy → Mddxy,dyz being the lowest energy transitions in the spectra of their respective complexes, both these transitions being of low intensity.  相似文献   

12.
MY2(MoO4)4:Sm3+ and MY2(MoO4)4:xSm3+,yEu3+ (M=Ca, Sr and Ba) phosphors were successfully prepared using solid-state reaction route, and their luminescent properties and energy transfer process from Sm3+ to Eu3+ were systematically investigated. The results indicate that MY2(MoO4)4:Sm3+ phosphors can be effectively excited by 407 nm near UV light originating from the 6H5/2 → 4F7/2 transition of Sm3+, and exhibit a satisfactory red emission at 646 nm attributed to the 4G5/2 → 6H9/2 transition of Sm3+, in which the emission intensity of SrY2(MoO4)4:Sm3+ is the strongest among the MY2(MoO4)4:Sm3+ (M=Ca, Sr and Ba) phosphors. For Eu3+ co-doped MY2(MoO4)4:Sm3+ samples, with increasing Eu3+ doping content, the main emission peaks of Sm3+ (approximately 646 nm) are decreased, but the emission peaks and intensity of Eu3+ are increased while the maximum intensity of luminescence at the Eu3+ concentration 0.9. The introduction of Eu3+ in the MY2(MoO4)4:Sm3+ phosphors can remarkably generate a strong emission line at 616 nm, originating from the 5D07F2 transition of Eu3+ and Sm3+ (4G5/2) → Eu3+ (5D0) effective energy transfer process. The energy transfer mechanism from Sm3+ to Eu3+ was discussed in detail.  相似文献   

13.
We report here the synthesis and characterization of a host of Eu(Phen)L3 with cinnamic acid (C6H5CH = CHCOOH, HL) and phenanthroline (Phen), and employing microwave radiation, where the microwave radiation is used just for the uniform heating of the reaction mixture. Its IR absorption spectra, scanning electron microscopy (SEM), and fluorescence spectra were studied. The results show that the particles of Eu(Phen)L3 phosphors are basically spherical in shape, with good dispersing. The mean particle size is 1–2 μm. The excitation spectrum is a broad band and the main peak is at 320.0 nm. Moreover, excitation peak at 396.0 nm was found in the excitation spectrum. The emission spectrum shows that Eu(Phen)L3 has narrow emission peaks. The emission peaks are ascribed to Eu3+ ions transition from 5 D J (J = 0) to 7 F J (J = 1, 2, 4). However, the strongest main emission peak locates at 614.0 nm, which corresponds to the electric dipole transition of Eu3+(5 D 07 F 2) The article is published in the original.  相似文献   

14.
Eu3+ luminescence was studied in Ba2Mg(BO3)2 by selectively substituting at Mg site. The parent host Ba2Mg(BO3)2 and Ba2Mg0.9Eu0.05Li0.05(BO3)2 were synthesized by conventional solid state reaction method. Their isostructural nature was confirmed using powder X-ray diffraction technique. The photoluminescence excitation spectrum of Eu3+ exhibited a broad Eu3+O2− charge transfer band with a maximum at 253 nm along with other excitation transitions. The emission characteristics of Eu3+ were found to be excitation wavelength-dependent. The equally intense magnetic and electric dipole transitions for excitation under longer wavelengths showed the presence of Eu3+ at a site with non-inversion symmetry. Excitation using 253 nm resulted in the predominant magnetic dipole transition revealing Eu3+ at a site with inversion symmetry. The difference in the relative intensities of magnetic and electric dipole transitions originates from the change in symmetry around Eu3+ in Ba2Mg(BO3)2 under different excitations.  相似文献   

15.
Mg3(BN2)N was prepared by solid state metathesis reactions and several europium (Eu2+) doped samples were prepared to discover novel red‐emitting photoluminescent (PL) materials. It turned out that the undoped and doped samples showed very broad deep‐red photoluminescence ranging from about 500 nm into the near infrared. Due to the similar spectra of the undoped and doped samples and unusually high FWHM values of about 5780 cm–1 we conclude that the luminescence process originates from defect sites. This was confirmed by decay measurements which show that the decay constants for all samples were in the range of several milliseconds.  相似文献   

16.
A broad excitation band in an excitation spectrum of (Gd,Y)BO3:Eu was observed in the VUV region. It could be considered that this band was composed of two bands at about 160 and 166 nm. The preceding band was assigned to the BO3 group absorption. The later one at about 166 nm could be assigned to the charge transfer (CT) transition of Gd3+-O2−. Such an assignment was deduced from the result that broadbands at around 170 nm for GdAlO3:Eu, and at 183 nm for Gd2SiO5:Eu are due to the CT transition of Gd3+-O2−; this was also identified by CaZr (BO3)2:Eu. Since there are no Gd3+ ions in it; a weak band in the VUV region in the excitation spectrum of Ca0.95ZrEu0.05(BO3)2 was observed. The excitation spectra were overlapped between the CT transition of Gd3+-O2− and BO3 group absorption, and it caused the emission of Eu3+ effectively in the trivalent europium-doped (Gd,Y)BO3 host lattice under 147 nm excitation. Intense broad excitation bands were observed at about 155 nm for YBO3:Eu and at about 153 nm for YAlO3:Eu; it could be attributed to the CT transition between Y3+ and O2−. As a result, under the xenon discharge (147 nm) excitation, the intense emission of Eu3+ in GdBO3 was found to be more convenient just because of the partial substitution of Y3+ for Gd3+.  相似文献   

17.
The effects of sodium (Na+) and calcium (Ca2+) cations on model zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayers spread on metal chloride salt solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne‐detected (HD)‐VSFG spectroscopy. VSFG and HD‐VSFG spectra in the OH stretching region reveal cation‐specific effects on the interfacial water′s H‐bonding network, knowledge of which has been limited to date. It is found that low‐concentrated Ca2+ more strongly perturbs interfacial water organization relative to highly concentrated Na+. At higher Ca2+ concentrations, the water H‐bonding network at the DPPC/CaCl2 interface reorganizes and the resulting spectrum closely follows that of the bare air/CaCl2 interface up to ~3400 cm?1. Most interesting is the appearance of a negative band at ~3450 cm?1 in the DPPC/CaCl2 Im χs(2) spectra, likely arising from an asymmetric solvation of Ca2+–phosphate headgroup complexes. This gives rise to an electric field that orients the net OH transition moments of a subset of OH dipoles toward the bulk solution.  相似文献   

18.
We have computed the structures, and select vibrational spectra, electron density and molecular orbital contour plots of plutonium(VI) complexes of environmental importance such as [PuO2(CO3)2]2− and [PuO2(CO3)3]4−. We show that Ca2+ is efficacious in gas-phase modeling of electronic and spectroscopic properties of multiply charged plutonyl di and tricarbonate anions through complexes such as PuO2(CO3)2Ca and [PuO2(CO3)3Ca3]2+.  相似文献   

19.
Preparation and Characterization of the Pentammine Complexes [Os(NH3)5(NCS)]2+ and [Os(NH3)5(NCSe)]2+ The new pentammine complexes [Os(NH3)5(NCS)]2+ and [Os(NH3)5(NCSe)]2+ are prepared from the reaction of [Os(NH3)5(CF3SO3)](CF3 SO3)2 with NH4SCN and KSeCN, respectively, in acetone, and subsequent purification by ion exchange chromatography on carboxymethyl cellulose. Evidence of N-bonding in both cases is given by the vibrational spectra, indicating that Os3+ is in terms of Lewis acidity harder than Ru3+, Rh3+, and Ir3+. I.r. and Raman spectra are interpreted according to local C4v symmetry around Os, and the presumed assignments are confirmed by comparison with the i.r. spectra of the perdeuterated compounds. In the electronic spectra of both complexes charge transfer bands at 412 nm (NCS) and 498 nm (NCSe) are observed, respectively. Further weak absorptions near 4500 and 5100 cm?1, which are in correlation with electronic Raman bands, are assigned to intraconfigurational transitions within the 2T2g (Oh) ground term, split into three Kramers doubletts by spin-orbit coupling and lowered symmetry. Electrochemical measurements demonstrate a stabilisation of +III and +II oxidation states by π-back donation to —NCS and —NCSe ligands.  相似文献   

20.
The influence of Mg2+, Na+ and temperature on the conformational state of three-stranded helical polyA/2polyU (A2U) has been studied by the thermal denaturation method. At Na+ concentrations of 0.01–0.1 M , on heating the transition A2U→AU+U (the 3→2 transition) and then AU→A+U transition (the 2→1 transition) are observed. (AU is double helix polyA/polyU; A and U are single-stranded polyA and polyU, respectively.) With 0.01 M and 0.03 M Na+ these transitions occur at Mg2+ concentrations within (0 ÷ 0.003) M . At these ionic concentrations, there is a narrow temperature region (3 ÷ 5°C) at which double-helical AU formed by the 3→2 transition is resistant to heating. In 0.1 M Na+, a rise in the Mg2+ concentration leads to a continuous decrease in the temperature range of this region, and above a critical concentration of Mg2+ (ca. 3.6×10–5 M )cr there is only one transition (the 3→1 transition) instead of the successive transitions 3→2→1. The constants of Mg2+ ion association with polyU, polyA and A2U were calculated using equilibrium binding theory. The data obtained helped explain the reasons for the different phase diagrams for A2U + Mg2+ complexes in solution at high and low Na+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号