首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用溶胶-凝胶法合成了Li1.18Ni0.15Co0.15Mn0.52O2富锂层状正极材料, 并使用聚(3-己基噻吩)对其进行了表面包覆. 采用多种光谱学和电化学手段对材料的形貌结构和电化学性能进行了分析. 结果表明, 聚(3-己基噻吩)溶液浸泡后在富锂材料表面形成厚约1.5 nm的均匀包覆层. 表面包覆后富锂层状正极材料的极化和阻抗明显减小. 在0.2C倍率下, 经过100次充放电循环后, 未包覆的富锂材料放电比容量衰减为170 mA·h/g, 而经过0.3%聚(3-己基噻吩)包覆的材料的放电比容量则保持在205 mA·h/g, 容量保持率由68%提高到82%; 10C倍率下的放电比容量由72 mA·h/g提高到116 mA·h/g.  相似文献   

2.
以金属有机框架材料MIL-125(Ti)为模板制备了多孔TiO2, 同时引入碳纳米管, 得到碳纳米管交联包覆多孔TiO2的三维导电复合材料. 将该复合材料涂覆在隔膜表面并应用于锂硫电池. 利用透射电子显微镜(TEM)、 扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)等对材料的结构和组成进行了表征. 电化学测试结果表明,在0.5C(1C=1675 mA/g)倍率下, CNTs/S复合正极材料表现出高达1051.1 mA·h/g的放电容量, 循环150周后仍可保持在904.8 mA·h/g. 在1C倍率下, 放电容量最高可达1036.9 mA·h/g, 循环250周后仍有763.0 mA·h/g, 展现出了良好的倍率性能和循环稳定性.  相似文献   

3.
采用水热法制备了一种含铝金属有机骨架材料, 其在高温下发生炭化得到多孔碳, 最后与硫复合制得锂硫电池正极材料. XRD图谱显示在高温炭化时多孔碳样品出现了部分石墨化. N2等温吸附-脱附测试分析显示合成的多孔碳材料含有微孔和介孔结构. 对不同载硫量的锂硫电池进行了充放电性能测试, 结果显示S质量分数为46.3%的样品在0.01 C倍率下首次放电容量达到1272 mA·h/g; 在0.1 C倍率下首次放电容量为934 mA·h/g, 循环性能良好.  相似文献   

4.
以Ca3N2为前驱体,用高温热解法制备了2D层状结构Ca2N 并用X射线和扫描电镜对Ca2N的组成、结构和形貌进行了表征。 作为钠离子电池新型负极材料,在50 mA/g电流密度充放电,首次放电比容量可达584 mA·h/g,可逆比容量达180 mA·h/g。在2000 mA/g大电流密度下,仍有70 mA·h/g。  相似文献   

5.
通过高温热分解法制备了碳包覆氟化亚铁纳米复合材料(FeF2/C), 并对其结构、 形貌及电化学性能进行了研究. 结果表明, 该方法对FeF2实现了碳包覆, 且形成部分碳化铁(Fe3C). 电化学性能测试结果表明, 该材料在0.1C倍率下循环100周后的放电比容量达到246.7 mA·h/g, 相比于第2周的容量保持率高达93.6%, 具有良好的循环稳定性.  相似文献   

6.
Fe2O3作为锂电池负极材料具有诸多优点,但其较低的本征电导率和充放电循环过程中材料粉化使得其电化学储锂性能有待改善。 本文以具有花状微纳结构的铁醇盐为反应中间体,在空气气氛下烧结制备出具有花状微纳结构的铁基负极材料Fe2O3。 纳米花状的铁醇盐可以在低烧结温度下转化为目标产物,从而使得产物能够保持中间体的形貌。 300 ℃热处理条件下,所得样品在电流密度为200 mA/g时首次放电比容量为1360 mA·h/g,循环100次后的容量仍然达到515.6 mA·h/g;相比之下,450和800 ℃热处理所得样品100次循环后,比容量分别为247.6和206.7 mA·h/g。 微纳结构在增加材料的活性的同时,也能够抑制材料的粉化现象,因而所制得的材料表现出较大的比容量和良好的循环性能,为解决Fe2O3负极材料循环性能差的问题提供了思路。  相似文献   

7.
生物质甲壳素来源丰富、廉价易得、N含量高且具有纤维结构,经高温碳化即可获得导电性良好的多孔碳材料。 杯[4]醌(Calix[4]quinone,C4Q)的理论比容量高达447 mA·h/g,但它在传统电解液中的高溶解性和导电性差限制了其在锂电池中的实际应用。 为了解决上述问题,本文以甲壳素为原料,经高温处理制得了N掺杂的无定形碳纳米纤维材料(NACF),并利用其多孔结构吸附C4Q,制备出C4Q/NACF(质量比为1:1)复合材料。 该复合材料在0.1 C电流密度下,首圈放电比容量为426 mA·h/g,循环100圈后比容量为213 mA·h/g,甚至在1 C电流密度下,C4Q/NACF复合材料仍有188 mA·h/g的放电比容量。 实验结果表明,利用NACF碳材料固载C4Q的方法可以提高C4Q锂离子电池的循环稳定性和导电性。  相似文献   

8.
采用溶胶-凝胶法并辅以微波热处理合成了Na掺杂改性的Li2-xNaxMnSiO4/C(x=0, 0.05, 0.09, 0.13)复合正极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 恒电流充放电测试、 循环伏安(CV)和交流阻抗(EIS)测试等对材料进行了表征. 结果表明, 经微波辐射后得到的电极材料具有Pmn21型空间结构, 其碳层分布均匀, 粒径细小均匀, 约为15~30 nm. 在微波辅助原位碳包覆和Na掺杂共同作用下, 复合材料的电荷转移电阻明显降低, Li+扩散速率增大, 展现出优良的电化学性能. 在0.1C倍率下Li1.91Na0.09MnSiO4/C样品首次放电比容量为211 mA∙h/g, 50次循环后仍保持80 mA∙h/g的可逆容量; 0.5C和2.0C倍率下的放电比容量分别为106和53 mA∙h/g, 大电流下的可逆容量明显提高.  相似文献   

9.
采用溶胶-凝胶法, 用二氧化钼(MoO2)和C共同包覆Si/石墨粒子制备了Si/石墨/MoO2/C锂离子电池负极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 循环伏安(CV)和电化学阻抗(EIS)等分析了材料的形貌和性质. 结果表明, MoO2/C的共包覆在缓解材料体积膨胀的同时提高了材料的电子和离子电导率, 进而提高了材料的电化学性能. 复合材料的首次充电比容量为2494 mA·h/g, 首次库仑效率为72%, 经过100次循环后比容量为636.6 mA·h/g.  相似文献   

10.
利用物理浸渍和冷冻干燥等方法制备了具有三维网状结构的Ru/石墨烯/碳纳米管复合材料, 对该材料的结构、 形貌及电化学性能进行了表征和研究. 结果表明, 当Ru含量为30%, 热处理温度为500 ℃时, 材料的催化性能最优. 将其用作锂氧电池的正极催化剂, 以50 mA/g电流密度进行首次充放电时, 放电比容量约为5800 mA·h/g, 且在放电比容量为4000 mA·h/g以内时, 其极化电压仅为0.9 V; 当以50 mA/g电流密度进行恒容(500 mA·h/g)充放电循环时, 在极化电压低于1.1 V时, 仍能稳定循环12周. 复合材料电催化机理的研究结果表明, 三维网状结构不仅提供了O2和Li+的传输通道, 更增加了放电产物Li2O2的储存场所. 金属钌纳米粒子的负载既增加了复合材料的反应活性位点, 又促进了放电产物Li2O2的分解.  相似文献   

11.
采用纳米三氧化二铝(Al2O3)对富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2进行表面均匀包覆, 并考察了最优纳米Al2O3包覆量下材料的电化学性能. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)显示了纳米Al2O3对富锂锰基正极材料表面均匀包覆, X射线衍射分析(XRD)结果表明包覆后富锂材料依然具有良好的层状结构. 恒流充/放电循环测试发现, 包覆后的Li1.2Ni0.13Co0.13Mn0.54O2材料的首次放电比容量为249.7 mA·h/g, 循环100次后的容量保持率为89.5%, 与未包覆的Li1.2Ni0.13Co0.13Mn0.54O2材料相比, 容量保持率提升约13%. 循环伏安(CV)和电化学阻抗(EIS)测试结果表明, 纳米Al2O3包覆可有效抑制材料极化, 降低界面阻抗和电荷转移阻抗, 进而提升富锂锰基正极材料的电化学性能.  相似文献   

12.
为了改善富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2的循环性能,采用燃烧法合成了正极材料Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06).通过X射线衍射(XRD)和扫描电镜(SEM)对其结构与形貌进行了表征,利用恒电流充放电测试,循环伏安(CV)及电化学交流阻抗谱(EIS)技术对其电化学性能进行测试.结果表明,Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06)正极材料均具有α-NaFeO2型层状结构;在室温,2.0-4.8 V电压范围,以0.1C和1.0C(充放电电流以1.0C=180 mA·g-1计算)倍率充放电进行测试,样品Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2的首次放电比容量分别为280.3和206.4 mAh·g-1.其中,在1.0C倍率下,100次循环后容量保持率由原来的73.2%提高到88.9%;以5.0C倍率充放电进行测试,经50次循环后,掺杂正极材料的放电比容量为76.5 mAh·g-1,而未掺杂材料仅有15.0 mAh·g-1.在50、25和-10°C,2.0C倍率条件下,掺杂正极材料的电化学性能均得到有效改善,其中,在-10°C经过50次循环后正极材料Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2比未掺杂的正极材料相比,其放电比容量提高了61.1%.  相似文献   

13.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2.通过X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X射线能量散射谱(EDS)方法,研究了Ag/C包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响.结果表明,Ag/C包覆层的厚度约为25 nm,Ag/C包覆在保持了固溶体材料α-NaFeO2六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2的电化学性能.在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30次循环后,Ag/C包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%.循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   

14.
In this work, we present a new design for a surface protective layer formed by a facile aqueous solution process in which a nano-architectured layer of LiFePO4 is grown on a Li-rich cathode material, Li1.2Mn0.54Ni0.13Co0.13O2. The coated samples are then calcined at 400 or 500℃ for 5 h. The sample after calcination at 400℃ demonstrates a high initial columbic efficiency of 91.9%, a large reversible capacity of 295.0 mAh·g-1 at 0.1 C (1 C=300 mA·g-1), and excellent cyclability with a capacity of 206.7 mAh·g-1after 100 cycles at 1 C. Meanwhile, voltage fading of the coated sample is effectively suppressed by protection offered by a LiFePO4 coating layer. These superior electrochemical performances are attributed to the coating layer, which not only protects the Li-rich cathode material from side reaction with the electrolyte and maintains the stability of the interface structure, but also provides excess reversible capacity.  相似文献   

15.
采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料, 并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3 含量变化对材料结构及电化学性能的影响.研究发现, 材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时, 样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似; 而当x≥0.4时, 样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时, 材料表现出两相共存的特征.HRTEM结果显示, 随着Li2MnO3含量的增加, 样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序, 并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明, 当x≤0.6时, 材料的放电比容量随着x的增加而增加; 当x>0.6时, 其放电比容量则随着x的增加而下降; 当x=0.6时, 放电比容量最高, 室温及高温(50℃)下分别为260 和304 mA·h/g.EIS研究结果表明, 这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加, 进而影响材料的电化学性能.  相似文献   

16.
随着新能源如电动汽车、储能电站的蓬勃发展,人们对下一代高性能锂离子电池的能量密度、功率密度和循环寿命提出了更高的要求. 而富锂锰基正极材料xLi2MnO3·(1-x)LiMO2(0 < x < 1,M = Mn、Co、Ni…)具有可逆比容量高(240 ~ 280 mAh·g-1,2.0 ~ 4.8 V)、电化学性能较佳、成本较低等优点,已吸引了研究者的关注,有望成为下一代锂离子电池用正极材料. 本实验室采用固相法和溶胶-凝胶法制备不同的富锂锰基正极材料,其中,溶胶-凝胶法制得的Li[Li0.2Mn0.54Ni0.13Co0.13]O2电极首周期放电比容量277.3 mAh·g-1,50周期循环后容量272.8 mAh·g-1,容量保持率98.4%. 本文重点结合本实验室的研究工作,对新型富锂锰基正极材料xLi2MnO3·(1-x)LiMO2的结构、合成、电化学性能改性和充放电机理等进行总结与评述.  相似文献   

17.
陈丽辉  吴秋晗  潘佩  宋子轩  王锋  丁瑜 《应用化学》2018,35(11):1384-1390
采用模板导向法和高温固相法制备尖晶石型八面体结构的LiMn2O4锂离子电池正极材料,研究了该材料的结构和电化学性能。 电化学性能研究表明,该电极材料具有良好的循环稳定性和倍率性能,在2.5~4.5 V电压范围,电流密度为100 mA/g时,首周充放电比容量分别为147和179 mA·h/g,循环50周后,其充放电比容量仍分别保持在180/181 mA·h/g。 优良的电化学性能可能归因于尖晶石LiMn2O4的形貌结构特征,该方法为制备锂离子电池正极材料提供了思路和依据。  相似文献   

18.
以醋酸盐为原料, 以十六烷基三甲基溴化铵(CTAB)为分散剂, 通过水热合成-高温烧结的方法制备高镍三元正极材料LiNi0.6Co0.2Mn0.2O2. 结果表明, 适量分散剂CTAB的加入可有效调节材料的颗粒形貌尺寸, 降低锂镍混排, 改善材料的电化学性能. 加入2%(质量分数) CTAB时, 制备的电池材料具有完整有序的层状结构, 且颗粒均匀分散, 具有最佳的循环性能和高低温性能. 该材料在室温及倍率1C下循环100次后, 容量保持率为88.5%. 在?20, 25和55 ℃条件下及倍率0.1C充放电时, 首次放电比容量分别为60.3, 168.5和207.2 mA·h/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号