首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
锂玻璃探测器中子探测效率的刻度   总被引:1,自引:0,他引:1  
为了精确测量keV能区的中子俘获截面,中国原子能科学研究院正在建造一台4π 全吸收型γ 探测装置---GTAF,锂玻璃探测器将会作为中子束流监视器测量中子能谱。利用5SDH-2 加速器刻度了锂玻璃探测器在两个入射中子单能点(250 和565 keV) 的探测效率,并使用EANT4 和MCNP 程序模拟计算了锂玻璃探测器的相对探测效率。通过归一化实验数据和模拟结果,得到了锂玻璃探测器在10keV~1 MeV 能区的中子探测效率曲线。对于把锂玻璃探测器测量得到的飞行时间谱转化为中子束流能谱,是一项非常重要的工作,同时为探测器效率刻度提供了新方法。In order to accurately measure the neutron capture cross section in the energy range of keVMeV, 4 πgamma-ray total absorption facility (GTAF) is being constructed at China Institute of Atomic Energy (CIAE). The lithium glass detector will be used as a neutron beam monitor for GTAF. The detection efficiency of the lithium glass detector at two incident neutron energy points (250, 565 keV) was calibrated in 5SDH-2 accelerator, and the relative detection efficiency was simulated by GEANT4 and MCNP code. By the normalization of the experimental data and simulation result, the neutron detection efficiency curve of the lithium glass detector between 10 keV and 1 MeV was obtained. This work will be important to convert the Time-of-flight spectrum that be measured by Li-glass detector to the energy spectrum of neutron beam, and provide the new method for calibration of detection efficiency.  相似文献   

2.
In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial resolution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.  相似文献   

3.
To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt γ-rays in detectors for depleted uranium spherical shells under D-T neutron irradiation. In the first step, the γ-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501 A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the γ-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4–3 MeV for the prompt γ-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.  相似文献   

4.
With the construction of the new Radioactive Ion Beam Line in Lanzhou (RIBLL Ⅱ) which connecting the CSRm and the CSRe, an experimental setup.The Time-of-Flight (ToF) technique was recognized as one of the best ways for neutron detection and it, is employed by the neutrons wall. Considering the high neutron multiplicity, the detector shouldal so have the ability to resolve the multiple hits. Moreover, a high detection efficiency for the neutrons with energies ranging from 100MeV to 1 GeV is also required besides the high granularity. In this case, the sampling hadronic calorimeter type of detector has been selected. In order to estimate the performance of the detector and  相似文献   

5.
叙述了γ探测器的14.1 MeV中子灵敏度标定原理和屏蔽方法,利用MCNP程序建模, 优化设计了对γ和中子高屏蔽性能的屏蔽体。 实验研究表明, 其信噪比最高达10∶1, 比测量点本身的信噪比1.35∶1提高了7倍, 从而实现了γ探测器的中子灵敏度标定。 It is introduced that a method and principle for calibrating 14.1 MeV neutron sensitivity of γ ray detector. A shield system for scattering neutrons and γ rays has been optimized by MCNP code. The experimental results show that the signal to noise ratio of the system is about 10:1, 7 times higher than the value of 1.35〖KG-*4〗∶〖KG-*4〗1 without shield system. Calibration of neutron sensitivity of γ ray detector is then accomplished.  相似文献   

6.
在中国原子能科学研究院的高压倍加器上利用中子飞行时间方法测量了2.8 MeV中子引起238U裂变的瞬发中子能谱,通过增大样品量和设计合适的屏蔽体提高了效应/本底比,使得测量数据的不确定度满足预期目标(在5.5~14 MeV能区内,能量间隔为0.5 MeV条件下能谱的不确定度小于10%)。将实验几何、中子源能量分布及角分布、探测效率、束流的时间结构等实验条件输入到MCNP程序里,模拟了出射的中子谱,模拟结果与测量结果在不确定度范围内一致,验证了在入射中子能量较低时238>U的裂变瞬发中子谱评价数据的可靠性。The Prompt Fission Neutron Spectrum (PFNS) of 238U induced by 2.8 MeV neutron was measured using the Cockcroft-Walton accelerator in China Institute of Atomic Energy (CIAE). The signal/background ratio was improved by increasing the amount of sample mass and using an appropriate shielding system. The final uncertainty of neutron energy spectrum in 5.5~14 MeV region is less than 10% with a bin size of 0.5 MeV which has reached this project's anticipation. The experimental geometry, the angular distribution and energy distribution of neutron source, the detection efficiency and time structure of deuteron beam were inputted into the MCNP code to simulate the outgoing neutron spectrum. The simulated results agree with the experimental ones within the uncertainty. The result indicates that the evaluated PFNS for 238U at low neutron energy is reliable.  相似文献   

7.
In this paper a two dimensional readout micromegas detector with a polyethylene foil as converter was simulated on GEANT4 toolkit and GARFIELD for fast neutron detection. A new track reconstruction method based on time coincidence technology was developed in the simulation to obtain the incident neutron position. The results showed that with this reconstruction method higher spatial resolution was achieved.  相似文献   

8.
A new concept of neutron detector based on Gas Electron Multiplier(GEM) technology is presented in this paper,in which a novel multi-layer high density polyethylene(HDPE) as neutron-to-proton converter is proposed and studied with Geant4 toolkit for fast 14 MeV neutron.Our preliminary results show that the detection efficiency of the detector with 400 converter units is higher than 2.3% and reconstruction accuracy of the incident neutron position is higher than 2.6%.  相似文献   

9.
中子照相是一种重要的无损检测技术,它能用于火工产品、毒品和核燃料元件等的检测。基于紧凑型D-T中子发生器,完成了一个用于快中子照相的准直屏蔽体系统(BSA)的物理设计。根据D-T中子源的能谱和角分布建立了中子源模型,采用MCNP4C蒙特卡罗程序,模拟了准直屏蔽体系统中中子和γ射线的输运,准直中子束相对于单位源中子的中子注量可以达到9.30×10-6 cm-2,准直中子束中主要是能量大于10 MeV的快中子;在设置的样品平面直径14 cm的照射视野范围,准直束中子注量的不均匀度为4.30%,准直束中中子注量与γ注量的比值为17.20,中子通量和中子注量比值J/Φ为0.992,说明准直中子束有好的平行性;准直屏蔽体外的泄露中子注量率与准直束中子注量率相比降低了2个量级。所设计的准直屏蔽体能满足快中子照相的要求。Neutron radiography is an important nondestructive testing technique. It can be used to detect the explosive devices, drug and the nuclear fuel element, etc. A beam-shaping-assembly (BSA) based on a compact D-T neutron generator is designed for fast neutron radiography in this paper. D-T neutron source model is constructed based on the neutron energy spectrum and angular distribution data. The transportation of neutron and γ-ray in the BSA is simulated using MCNP4C code. The neutron fluence of the collimated neutron beam with respect to the neutron source of the unit source is 9.30×10-6 cm-2. The collimated neutron beams is mainly fast neutrons with energies greater than 10 MeV. In the irradiation field range with a diameter of 14 cm, the neutron fluence uniformity of the collimated beam is 4.3%, the ratio of the neutron fluence to the gamma fluence in the collimated beam is 17.20, and the neutron flux and the neutron fluence ratio (J/Φ) is 0.992 which indicates that the collimated neutron beam has good parallelism. The leakage neutron fluence in outside of BSA is two orders of magnitude lower than that of the collimated neutron beam. The designed BSA can meet the need of fast neutron radiography.  相似文献   

10.
主要介绍了利用252Cf标准裂变中子能谱刻度快脉冲LS301型液闪中子探测器的探测效率的实验方法和结果, 简要介绍了实验数据的处理过程, 得到了阈值分别为0.5, 0.7, 1.0和1.6 MeV, 以及中子能量在10 MeV以下的探测器效率, 并对测量结果进行了误差分析。同时为了检验实验结果的准确性, 将实验结果与理论计算结果进行比较, 两者在不确定度范围内符合得很好。Neutron detection efficiency of LS301 fast neutron detector was calibrated by measuring the neutron energy spectrum of 252Cf source, which has a standard fission neutron spectrum. A low mass, fast ionization chamber is used as the fission fragments detector in the time of flight(TOF) spectrometer and afforded the start signal of neutron flight. The stop signal was offered by the anode of LS301. A measured TOF spectrum was turned to the neutron energy spectrum which will be compared with the standard one. Consequently, the fast neutron detection efficiency of LS301 was obtained. Calibration procedures of experimental and data processing was given. Relative detection efficiencies were obtained separately for threshold settings of 0.5, 0.7, 1.0 and 1.6 MeV for neutron energies under 10 MeV. Experimental results accorded with theoretical efficiency curves which were calculated with the Monte Carlo code NEFF50.  相似文献   

11.
介绍了Si-PIN中子探测器的结构和测量原理,分析了探测器对14MeV中子的灵敏度.利用该探测器测量了等离子焦点装置的D-T脉冲中子产额,实验结果与SDIN500探测器测量结果在5?%不确定度范围内一致  相似文献   

12.
组合闪烁探测系统由"Pb过滤片加塑料闪烁探测器"组成. 采用直流标定方法,实验研究了ST401、ST1422、ST1423组合探测系统对0.565MeV-14.16MeV能量范围的6个能点的中子灵敏度,得到了探测系统的中子灵敏度随Pb过滤片厚度的变化、随闪烁体厚度的变化和随中子能量的变化关系. 利用理论计算和实验测量结果相结合,获得了3种组合闪烁探测系统的中子灵敏度能量响应曲线.  相似文献   

13.
The radiative capture cross sections of natural Mo relative to the 197Au (n,γ) were measured in the 0.7—1.4MeV neutron energy range,using a large liquid scintillator detector and the time-of-flight method.In the 0.01—2.0MeV neutron energy range,the theoretical calculation of (n,γ) reaction cross section for Mo was performed.The result of calculation is compared with the experimental data.  相似文献   

14.
This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies <1 MeV. Fission foil neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons <1 MeV ranged from 0.80 microSv/d on the low altitude, low inclination STS-41B mission to 22.0 microSv/d measured in the Shuttle's cargo bay on the highly inclined STS-51F Spacelab-2 mission. In one particular instance a detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the ~6 year LDEF mission. Thermal neutrons (<0.3 eV) were observed to make a negligible contribution to neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission.  相似文献   

15.
In order to treat the waste material of nuclear power and develop new type of clean nuclear power,it is necessary to measure the neutron adta of long half life nuclei existed in the waste material.The prompt spontaneous neutron spectrum is one of the most important unclear data for new type nuclear power facilities as well as for understanding the mechanism of fission neutron emission.The measurements of 248Cm/252Cf spontaneous prompt fission neutron spectrum in the neutron energy range form 200keV to 12MeV wer performed by using TOF method.A micro-ionization chamber aws used as fission fragment detector and stibene crystal as neutron detector.The flying paths of neutrons for the measurements were 30cm,50cm and 100cm respectively.The spontaneous prompt fission neutron spectrum of 248Cm was fitted by the Maxwellian distribution and the temperature was determined as (1.401±0.006)MeV in the corresponding neutron energy range.  相似文献   

16.
The neutron yields and the neutron emission rates in the forward direction for 50MeV/u 18O-ion induced reactions on thick Be, Cu, Au targets have been measured using the threshold detector activation method. The measured results indicate that the neutron yield and the neutron emission rate depend on the atomic number of target nuclei; neutron yield for the lighter target is greater than that for the heavier one. The neutron yield for 50MeV/u 18O-ion on Cu is about four times as large as that for 50MeV/u 12C-ion on Cu when incident energies per nucleon are identical.  相似文献   

17.
Elastic scattering of 7, 9, 11, 20 and 26 MeV neutrons from 208Pb has been measured with the Ohio University Tandem Van de Graaff accelerator. Standard pulsed beam time-of-flight techniques were employed. Measurements of the incident flux at 0° were used to normalize the differential cross sections. The measured cross sections were corrected for dead time, detector efficiency, flux attenuation, multiple scattering, finite geometry, neutron source anisotropy and compound elastic contribution. Relative uncertainties are estimated to be between 5%–10% and the uncertainty in the normalization is estimated to be less than 5 %. The data were used to obtain neutron optical potential parameters. A comparison with proton optical parameters is presented, and the (p, n) quasi-elastic cross section is calculated and compared with available data. Deformation parameters for the 3? state (Q = ?2.615 MeV) and 5ā (Q = ?3.198 MeV) in 208Pb were obtained at incident energies of 11 and 26 MeV.  相似文献   

18.
In this paper a two dimensional readout micromegas detector with a polyethylene foil as converter was simulated on GEANT4 toolkit and GARFIELD for fast neutron detection.A new track reconstruction method based on time coincidence technology was developed in the simulation to obtain the incident neutron position.The results showed that with this reconstruction method higher spatial resolution was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号