首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
用惰性气体蒸发-真空原位固结法制备了直径为10mm、厚度为1~2mm的具有清洁界面的纳米PbF2块体材料,原位固结压强为0.3~1.8GPa。采用X射线衍射和复阻抗谱方法,研究了固结压强对纳米PbF2物相组成、晶粒度和离子电导率的影响。结果表明,相同压强下,纳米β-PbF2比粗晶β-PbF2更易于向α-PbF2转化;随着压强增大,样品中低电导率的α-PbF2相不断增加,导致离子导率下降。压强引起的  相似文献   

2.
 用惰性气体蒸发和真空原位加压方法制备了具有清洁界面的平均粒度16 nm的纳米固体CaF2,并在0.1~2 400 MPa范围不同的静水压下用100 kHz~100 Hz内70种频率,精确测量了纳米CaF2的复平面阻抗谱。分别给出纳米CaF2离子电导率和相对介电常数随流体静压力的变化规律。最后的讨论指出:离子迁移通遭受压后的变化(大于、等于或小于最佳值)是影响离子电导率-压力曲线的主要因素;界面层空间电荷极化是造成纳米CaF2相对介电常数较大的原因,由此界面效应可理解介电常数-压力曲线。  相似文献   

3.
 采用惰性气体蒸发和真空原位加压方法,制备了具有清洁界面的平均粒度为14 nm的纳米固体CaF2,并在0.1 MPa~2.2 GPa压力范围内52个不同的静水压下,分别详细测量出其离子电导率σ和相对介电常数随压力变化的规律。讨论指出:(1)离子迁移通道受压后的变化(大于、等于或小于最佳值),是影响离子电导率-压力曲线峰值的主要因素;(2)当压力从0.66 GPa再增加时,lg σ分三段线性下降,可归因于纳米晶体的三种自由体积;(3)界面层空间电荷极化是造成纳米CaF2相对介电常数较大的原因,由此可理解介电常数的压力效应,了提高产品的氟离子电导率,用真空原位加压法制备纳米材料时,应当采用高于0.66 GPa的压力。  相似文献   

4.
 采用偏钛酸与炸药混合进行爆轰合成,制备出晶粒尺寸在10 nm到60 nm之间的纳米TiO2粉末。结合XRD、TEM、BET等表征手段,研究了纳米TiO2的制备参数与其晶粒尺寸和晶相结构之间的关系。发现当炸药含量增加时,产物晶粒尺寸增大,同时晶相结构随炸药量的增加逐渐由低温的锐钛矿型和板钛矿型向高温的金红石型转变,爆轰温度在这种转变过程中起着极为重要的作用。  相似文献   

5.
 用混溶蒸发法制备出一系列高聚物P(EO)n-CuBr2(n=4, 8, 12, 16, 24)薄膜,并详细测量它们在0.1~350 MPa静水压范围内的复阻抗谱、在0.1~2 400 MPa静水压范围内的交流电导率以及介电常数。结果表明:离子电导率对压力的依赖关系(σ-p曲线)是条折线,可分解为四条直线相迭加。进一步做X射线衍射物相分析,它们分别归于PEO非晶相的压力效应、PEO结晶相的压力效应和析出CuBr2新相的压力效应。由此计算出上述三种不同相所对应的激活体积、截止压力各自随高聚物P(EO)n-CuBr2薄膜组分的变化。为减小离子电导率的压力效应提供了物理基础。  相似文献   

6.
 本文准确测量了0~2.21 GPa流体静压力下整体片状非晶B2O3-0.7Li2O-0.7LiCl-0.10Al2O3及其粉末样品的离子电导率和激活体积。对整片非晶锂离子电导率的压力效应应用离子迁移通道的物理图象给出初步的微观解释。对非晶粉末样品离子电导率的压力效应,则发现是由体电导率、接触电导率及同相界面电导率变化的综合结果。高压实验表明,同相界面效应可使离子电导率提高2.5~16倍,该非晶材料还有潜力可进一步提高其离子电导率。  相似文献   

7.
 研究了Fe78B13Si9、(Fe0.99Mo0.01)78B13Si9非晶合金的激波晶化行为。激波是由氢-氧爆炸产生的。实验结果表明:激波能使非晶合金在微秒时间内晶化,晶化主相为α-Fe基固溶体,次晶化相为Fe3Si,且观察到α-Fe基因溶体晶格常数变小。用DTA分析进一步证实:激波晶化是比较完全的,晶化相相当稳定。  相似文献   

8.
 用电阻测量及X射线衍射法研究了非晶Zr70Cu30合金在常压和高压下热稳定性以及晶化相的变化。结果表明压力提高了这种非晶合金的晶化温度并明显地改变了合金中的相平衡关系。在2 GPa压力下,平衡相为Cu10Zr7和α-Zr的混合物,而常压下为CuZr2和少量α-Zr的混合物。  相似文献   

9.
 选用分子量为500万的聚氧化乙烯和无水溴化铜,通过混溶蒸发法制备出一系列高聚物P(EO)n-CuBr2(n=4,8,12,16,24)薄膜,并在0.1~2443 MPa范围不同的静水压下详细测量了它们的相对介电常数。分别探讨了增塑剂(C4H6O3)含量对室温常压下离子电导率和介电常数的影响,及其对高压下离子电导率和介电常数的影响。实验结果表明:P(EO)16-CuBr2薄膜在添加介电常数较高和本体粘度较低的增塑剂C4H6O3后,当其相对浓度nPC/ntotal=20%时,不仅使该薄膜的室温常压离子电导率明显提高6.8倍,而且使其在高压力下的离子电导率提高1(0.1~100 MPa)至2(350~800 MPa)个数量级,非常有利于在高压环境中应用。  相似文献   

10.
 采用溶胶凝胶法制备了纳米Ti1-xCexO2系列样品。利用X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨电子显微镜(HRTEM)对纳米Ti1-xCexO2系列样品颗粒尺寸、形貌以及固溶区范围和物相组成进行了研究;同时,采用Rietveld结构精修的方法研究了Ce的不同掺杂量对TiO2晶体结构的影响。实验结果表明,Ce掺杂TiO2能够形成Ti1-xCexO2固溶体,Ti1-xCexO2的固溶区范围在x=0~0.06之间,Ti1-xCexO2的晶粒度为5~10 nm,平均颗粒粒度约35 nm,且粒度均匀。  相似文献   

11.
 本文应用DTA及X射线衍射法在常压及高压下对一种含SiO2的锂离子导体玻璃0.3Li2O-0.67SiO2-0.03V2O5加热时的晶化行为进行了研究。该氧化物玻璃的晶化过程分两个阶段。在常压下,第一晶化过程发生在560 ℃附近,析出相为Li2O·2SiO2。对应的晶化温度Tx1随压力的升高发生了急剧的变化。从常压到0.3 GPa,Tx1从560 ℃升高到620 ℃;继续升压时Tx1突然下降,并在0.4 GPa处跌到528 ℃,呈现一个陡峭的峰值。0.4 GPa以上,Tx1随压力的变化则呈常规行为,比较平稳地,大致线性地升高,一直到最高测定压力2 GPa。 本文最后对这些行为的可能原因进行了讨论。  相似文献   

12.
 本文分别使用4∶1的甲醇-乙醇混合溶液和固态氩做传压介质测量α-Bi2O3的高压拉曼光谱。实验结果表明,传压介质对样品的谱线频移速率及相变压力有明显的影响。通过对拉曼光谱的分析认定,α-Bi2O3在高压下可能经历了一次结构相变,在准静水压和非静水压条件下的相变压力分别为23.1 GPa和20.4 GPa。  相似文献   

13.
 本文在0~0.8 GPa的压力范围内对金属玻璃Cu100-xZrx(x=70,75)进行了室温下的电阻测量。利用实验得到的负的电阻-压力系数αp及推广的Ziman理论着重计算并讨论了压力下d波相移η2(EF)项对αp的贡献。  相似文献   

14.
 高压下与Al发生扩散反应的非晶(Fe0.99Mo0.01)78Si9B13(FMSB)的晶化产物与纯FMSB的不同。与Al反应的FMSB非晶在3.0~5.0 GPa、780~900 K热处理时,晶化为α-Fe(Al)和次亚稳非晶合金;在这一压力范围以外,720~900 K热处理时,晶化为α-Fe(Si)、Fe3B或Fe2B。与Al发生反应的FMSB非晶可能通过与Al的扩散反应在Al/FMSB界面开始晶化。压力和温度对晶化过程的影响主要是由于α-Fe固溶体的Gibbs自由能随压力、温度和Al含量的变化。  相似文献   

15.
 以化学水解法合成的β-FeOOH纳米微粉(平均粒径在12 nm左右)为原料,分别在0.0~4.5 GPa和200~350 ℃的压力和温度范围进行冷压和热压处理。实验结果表明,冷压对β-FeOOH纳米固体的结构没有明显影响,但却使它的热致相变(从β-FeOOH相到α-Fe2O3相)温度从常压下的203.8 ℃提高到4.5 GPa压力下的274 ℃,接近常规体相材料的相变温度。而在一定的热压条件处理下,首次发现了从β-FeOOH相到α-FeOOH相的结构转变,并在4.5 GPa、200 ℃的热压条件下得到了转变过程中的一个新的亚稳相。从压力和温度对纳米微粒的作用角度,对上述实验结果进行了讨论。  相似文献   

16.
 在5~7 GPa,600~1 800 ℃的压力-温度范围内对组份为氧化硅-稀土氧化物微粉混合物(3α-Si3N4+0.5La2O3+0.5Pr6O11(mol.%))的烧结产物进行了研究。所得结果表明其成相规律与Sialon体系在高温高压下烧结时不同。在直到5 GPa的高压下,α-Si3N4表现出相当高的稳定性,并不转变成β相。当烧结温度低于1 600 ℃时,烧结体仍然由以α-Si3N4为基础的固溶体及稀土氧化物组成,而后者则表现出一系列相变化。当压力超过6 GPa、温度高于1 600 ℃时,物料烧结成一个新的单相高压结构ReSi3O2N4。其衍射数据可以用一个正交点阵来拟合。其晶格参数为:a=1.298 3 nm,b=0.814 0 nm,c=0.428 5 nm。  相似文献   

17.
Using a microcircuit fabricated on a diamond anvil cell, in situ conductivity measurements on nanophase (NP) γ-Fe2O3 are obtained under high pressure. For NP γ-Fe2O3, the abrupt increase in electrical conductivity occurs at a pressure of 21.3 GPa, corresponding to a transition from maghemite to hematite. Above 26.4 GPa, conductivity increases smoothly with increasing pressure. No distinct abnormal change is observed during decompression, indicating that transformation is irreversible. The temperature-dependence of the conductivity of NP γ-Fe2O3 was investigated at several pressures, indicating the electrical conductivity of the sample increases with increasing pressure and temperature, and that a remarkable phenomenon of discontinuity occurs at 400 K. The abnormal change is attributed to the electronic phase transitions of NP γ-Fe2O3 due to the variation of inherent cation vacancies. Besides, the temperature-dependence of the electrical conductivity displays semiconductor-like behavior before 33.0 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号