首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
采用18-冠-6(18C6)为相转移催化剂,制备了一系列不同单体比例的聚[1,3-双(对羧基苯氧基)丙烷-癸二酸]共聚酸酐P(CPP-SA),并优化了聚合反应条件。P(CPP-SA)化学结构由傅里叶红外光谱(FT-IR)和核磁共振氢谱(1 H-NMR)表征,并通过特征黏度计算了P(CPP-SA)的黏均分子量。结果表明最佳的反应条件是18C6的用量20%,反应时间15h,P(CPP-SA)特征黏度可达到1.2dL/g,黏均分子量为2.02×105。将P(CPP-SA)置于pH=7.4的磷酸缓冲溶液中进行体外降解,结果表明,降解率与CPP/SA比例有关,其中P(CPP-SA)(CPP/SA=50/50mol/mol)的共聚酸酐降解率与降解时间接近线性关系,具有较好的应用前景。  相似文献   

2.
合成了6种三齿β-酮亚胺钒(Ⅲ)配合物{[R)X(C_6H_4)N=CH(C_6H_5)NC_(10)H_7O]VCl_2(THF):2a,R=CH_3,X=S;2b,R=CF_3,X=S;2c,R=Ph,X=S;2d,R=~tBu,X=S;2e,R=Ph_2,X=P;2f,R=Ph,X=O},并对其结构进行了表征和证明.2a~2f在催化乙烯均聚及其与环烯烃共聚时表现出了较高的催化活性和较为优异的稳定性,所得聚合物的分子量均呈单峰分布.在催化乙烯与降冰片烯(NBE)共聚以及乙烯与外型-1,4,4a,9,9a,10-六氢-9,10(1′,2′)-桥苯亚基-1,4-桥亚甲基蒽(HBM)共聚时,部分催化剂表现出了"正共单体效应".催化所得乙烯/NBE共聚物的分子量为43.1~66.4 kg/mol,NBE单元含量为30.9 mol%~42.1mol%,玻璃化转变温度为84~105°C;乙烯/HBM共聚物的分子量为90.2~138 kg/mol,HBM单元含量为14.7 mol%~25.0 mol%,玻璃化转变温度为173~188°C.  相似文献   

3.
《高分子通报》2021,(6):94-103
合成了一系列邻位大取代基四齿胺双酚配体钛配合物Me_2NCH_2CH_2N[CH_2-2-(3-R-5-~tBuC_6H_2)O]_2TiCl_2[2a,R=CPhMe_2;3a,R=CMePh_2;4a,R=CPh_3),对其结构进行了表征,研究了其催化乙烯均聚、乙烯/丙烯共聚及乙烯/1-己烯共聚性能,考察了配体结构及聚合反应条件对聚合行为的影响。与R=~tBu的已知配合物1a相比,这些新配合物在催化乙烯均聚和共聚时表现出较高的催化活性和良好的稳定性。在MAO活化下,催化乙烯聚合活性最高达1170kg PE/(mol Ti·h);在Al~iBu_3/Ph_3CB(C_6F_5)_4活化下,用配合物2a~4a得到的聚乙烯分子量最高可达113×10~4g/mol。在MAO活化下,1a~4a催化乙烯/丙烯共聚及乙烯/1-己烯共聚活性分别达到640kg polymer/(mol Ti·h)和1220kg polymer/(mol Ti·h);乙烯-丙烯共聚物分子量为3.1×10~4~17.4×10~4g/mol、乙烯-1-己烯共聚物分子量为4.9×10~4~15.5×10~4g/mol;所得乙烯-丙烯共聚物中丙烯单元含量最高可达36.9%(mol),乙烯-1-己烯共聚物中1-己烯单元含量最高为12.5%(mol)。催化剂配体空间位阻对共单体插入率有明显影响,随配体空间位阻增大,共单体插入率降低。  相似文献   

4.
以RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   

5.
以RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   

6.
通过CO_2—环氧丙烷(PO)—丁二酸酐(SA)三元共聚得到聚碳酸丁二酸亚丙酯(PPCS),PPCS中CO_2和SA单元随机分布,共聚物的分子量可在3万以下调节,PPCS可被白腐菌降解:在模拟生理条件下因水解而质量减小,分子量下降。  相似文献   

7.
环氧氯丙烷(ECH)与二氧化碳(CO2)的共聚反应产物具有可修饰的C―Cl键,是实现聚碳酸酯功能化的有效途径,然而该反应一直受制于较长的诱导期.本文提出了一种酸酐诱导增强共聚反应活性的策略,即在CO2/ECH共聚体系中引入微量环状酸酐以缩短诱导期,提高反应活性.以锌钴氰化络合物(DMC)催化剂为例,在CO2/ECH共聚体系中仅加入0.1 mol%的不同种类环状酸酐,ECH转化率可达到23.6%~83.6%(40℃,24 h),相比于未添加酸酐体系的低转化率(2.6%),反应活性显著增强.尤其是5-降冰片烯-2,3-二羧酸酐诱导的CO2/ECH共聚体系显示出最高的活性增强效应,在28 h内ECH转化率可达98.8%,催化效率为430 g polymer/g cat.,并保持91.3 wt%的聚合物选择性,进而制备出碳酸酯单元含量为68.2%、分子量为16.7 kg/mol的CO2基聚碳酸酯.进一步采用在线红外等光谱分析技术,证实环状酸酐优先与ECH发生共聚反应生成聚酯活性种是缩短...  相似文献   

8.
本文首次应用稀土配位催化剂NdL_3-A1(i-Bu)_3,在苯溶剂中,50℃下使苯乙烯-马来酸酐共聚,制得富于交替,数均分子量高达6—8.5×10~5的白色粉末共聚物。系统地研究了共聚合反应的特征及动力学行为,共聚合反应具有低的表现活化能(10.5kJ/mol),并且不被对苯二酚所阻聚。不同配体稀土(钕)催化剂活性次序为:Nd(naph)_3>Nd(P_(507))_3~NdCl_3·6H_2O>Nd(P_(204))_3>Nd(acac)_3·3H_2O,并且,初步揭示了共聚合反应的机理——两种单体形成电荷转移络合物参与增长的配位共聚。  相似文献   

9.
针对特超稠油流动性差、开采难度大的问题,以马来酸酐、C12~18不饱和酸、丙烯酰胺和苯乙烯为原料合成了油溶性聚合物降黏剂MAOS、MAS和两亲型聚合物降黏剂TEO9AS、C18AA,采用红外光谱对其结构进行了表征,比较了聚合物的降凝、降黏性能,测试了两亲聚合物的表面活性。实验结果表明:聚合物TEO9AS的临界胶束浓度为0.1g/L,γCMC为29.54 mN/m,当溶液达到0.03%(w)时界面张力可达到10-1 mN/m数量级;单独的油溶性聚合物和两亲型聚合物均具有较好降凝和降黏效果,油溶性聚合物加量越大,黏度越低。在加量为0.5%时,含有MAS和MAOS的稠油黏度分别为24353 mPa·s和44744 mPa·s,降黏率分别为91.00%和83.47%,两亲型聚合物TEO9AS的降黏率为80.22%。聚合物降黏剂与碱复配后可以大幅降低稠油黏度,尤其是两亲型聚合物TEO9AS与0.8%碱复合时黏度达到206 mPa·s,降黏率达到99.99%。表明两亲型聚合物与碱的混合具有很好的降黏协同效果,这一技术的开发为稠油常温开采提供了技术支撑。  相似文献   

10.
合成了5个不同结构的苯氧亚胺配体L1~L5,用Et_3N,Me_3SiCl或HNa处理后与TiCl_4·2THF或CpZrCl_3·DME进行配位反应得到不同取代基结构的化合物C1~C6,经过~1H NMR,~(13)C NMR,IR和元素分析等表征,确认了化学结构.以甲基铝氧烷(MAO)为助催化剂,化合物C1~C6为催化剂催化乙烯聚合,考察了聚合温度、乙烯压力、铝钛或铝锆比对催化剂活性及聚合物分子量的影响.聚合实验结果表明,刚性桥基结构提高了双核化合物(LMCl_3)_2的稳定性,催化剂的活性基本都能达到10~5~10~~6g/(mol M·h),其中C5的催化活性最高,达到1. 23×10~6g/(mol Zr·h); C4在Al/Ti摩尔比为50∶1时也具有较好的催化活性[5. 89×10~5g/(mol Ti·h)],聚合物分子量1. 11×10~6.该类催化剂还可以有效催化乙烯与1-辛烯共聚,1-辛烯插入率达到10. 65%(摩尔分数).  相似文献   

11.
以4种不同结构的α-二亚胺镍(Ⅱ)催化剂[(t-Bu)—N CH—CH N—(t-Bu)]NiBr2(C1),[C6H5—N C(Me)—C(Me)N—C6H5]NiBr2(C2),[(2,6-C6H3(Me)2)—N C(Me)—C·(Me)N—(2,6-C6H3(Me)2)]NiBr2(C3)和[(2,6-C6H3(i-Pr)2)—N C(An)—C(An)N—(2,6-C6H3(i-Pr)2)]NiBr2(An=acenaphthyl)(C4),在甲基铝氧烷(MAO)作用下,对甲基丙烯酸甲酯(MMA)进行催化聚合.以C2为模型催化剂系统研究了Al/Ni摩尔比、单体浓度、聚合温度、聚合时间和反应溶剂对催化活性及聚合物分子量的影响.在较适合的聚合条件(催化剂用量为1.6μmol,Al/Ni摩尔比为800,MMA浓度为2.9 mol/L,甲苯为溶剂,聚合温度为60℃,聚合时间为4 h)下,讨论了催化剂结构对催化活性和聚合物分子量的影响.研究发现,催化剂C1~C3催化MMA聚合均得到富含间规结构的聚甲基丙烯酸甲酯(PMMA).催化剂结构中空间位阻增大导致催化活性降低,空间位阻最小的C1催化活性最高[达107.8 kg/(mol Ni·h)];而空间位阻最大的C4催化活性仅为7.8 kg/(mol Ni·h).催化剂结构中给电子效应增加有利于催化活性及聚合物分子量的增加.C2催化活性为62.5 kg/(mol Ni·h),所得聚合物的分子量为5.0×104;而具有较强给电子效应的C3催化活性达到96.9 kg/(mol Ni·h),并得到更高分子量的聚合物(7.6×104).  相似文献   

12.
Fe(acac)3-Al(i-Bu)3-CCl4催化马来酸酐与降冰片烯共聚   总被引:1,自引:0,他引:1  
房江华  杨科芳  胡富陶 《催化学报》2005,26(12):1113-1116
 研究了Fe(acac)3-Al(i-Bu)3-CCl4(acac=乙酰丙酮)催化体系对马来酸酐(MA)与降冰片烯(NBE)交替聚合反应的催化性能. 用元素分析、核磁共振和红外光谱研究了共聚物的结构,在单体比为1∶1时,共聚物中MA和NBE的含量分别为52.2%和47.8%. 凝胶渗透色谱结果表明共聚物分子量分布窄. 动力学研究结果表明, MA与NBE共聚对单体浓度呈一级反应,其表观活化能为74.3 kJ/mol.  相似文献   

13.
应用石油醚-乙醇(6∶4,v/v)、30 g/L十二烷基硫酸钠溶液以及含20 g/L十六烷基三甲基溴化铵的0.5mol/L硫酸溶液依次处理烟叶样品,制备得到烟叶酸性洗涤纤维素(ADF)。采用碱性氧化铜氧化降解方法制备得到ADF降解产物。以Ultimate XB C18色谱柱为固定相,甲醇和水为流动相,梯度洗脱,在柱温35℃、流速0.8mL/min、检测波长280 nm和320 nm条件下,对6种烟叶样品的ADF降解产物进行了液相色谱分离,得到4个特征色谱峰。以这4个特征色谱峰为考察对象,可研究不同烟叶木质素组成的差异及其与烟叶吸味品质的关系。  相似文献   

14.
稀土催化异戊二烯—马来酸酐交替共聚   总被引:1,自引:0,他引:1  
首次用 Nd( naph) 3 -Al Et3 催化体系合成异戊二烯 -马来酸酐交替共聚物 .实验结果表明 ,共聚反应适宜条件为 :[M]总 =2 .6mol/L( [Ip]/[MAn]=1 ) ,n( Al) /n( Nd) =1 0 ,[Nd]=5× 1 0 -3 mol/L,甲苯 /二氧六环混合溶剂 (体积比为 2 /5) ,于 5℃聚合 2 h.共聚物收率达到 70 % .用元素分析、 IR和 13 C NMR对共聚物进行表征 ,所得共聚物为交替结构  相似文献   

15.
基于石墨烯修饰电极,分别建立了对苯二酚(HQ)和邻苯二酚(CC)浓度与电化学信号的工作曲线,并通过差分脉冲伏安法(DPV)考察了Fe~(2+)与H_2O_2添加量、pH环境及降解时间对HQ、CC降解率影响。结果表明:Fe~(2+)/H_2O_2芬顿体系对HQ、CC的降解效果明显,其中羟基自由基起主导作用。处理50 mL 6×10~(-5) mol·L~(-1)的苯二酚污染物时,Fe~(2+)与H_2O_2摩尔比为5∶4,芬顿试剂添加量为9.8×10~(-5) mol,降解时间为45 min,分别在pH=4.0的条件下降解HQ和pH=5.0的条件下降解CC,降解率分别达88.8%(HQ)和96.1%(CC)。  相似文献   

16.
合成了5种单茂双烷基稀土配合物Cp'Ln(CH2C6H4NMe2-o)2(1:Cp'=C5Me4Si Me3,Ln=Sc;2:Cp'=C9H7,Ln=Sc;3:Cp'=C5H5,Ln=Sc;4:Cp'=C5H5,Ln=Lu;5:Cp'=C5H5,Ln=Y)在助剂[Ph3C]-[B(C6F5)4]的活化下,考察了稀土金属和配体结构对异戊二烯和苯乙烯的均聚合活性和立体选择性的影响规律.结果表明小空间位阻的单茂钪(C5H5)Sc(CH2C6H4NMe2-o)2(3)催化异戊二烯聚合时,聚合活性和顺式立体选择性较优;催化苯乙烯聚合时获得无规聚苯乙烯.因此选用单茂钪催化剂3/[Ph3C][B(C6F5)4],考察了其催化异戊二烯/苯乙烯共聚合的性能,高活性地获得了组成和分子量可控、分子量窄分布的异戊二烯/苯乙烯多嵌段共聚物.通过1H-NMR,13C-NMR,GPC以及DSC对共聚物进行分析表征,结果表明,通过调控苯乙烯与异戊二烯的加料比例,共聚物中苯乙烯摩尔含量可以在1%~75%间调控,聚苯乙烯嵌段为无规聚苯乙烯;共聚物中聚异戊二烯顺-1,4选择性均大于91%;通过调控单体与催化剂的比例,共聚物分子量(Mn)可以在3.5×104~8.3×104间调控,分子量分布保持窄分布(Mw/Mn=1.71~1.94).  相似文献   

17.
季膦-磷钨酸室温离子液体的合成及光催化降解罗丹明B   总被引:1,自引:1,他引:0  
以不同摩尔比的磷钨酸与烷基取代季膦盐为原料合成了一系列磷钨酸类离子液体,并使用DSC和IR对系列离子液体进行了表征。 结果表明,[P(C14H29)(C6H13)3]-磷钨酸系列离子液体为室温离子液体,磷钨酸根保留了Keggin结构。 进一步研究了在可见光照射下,以所制备的磷钨酸季膦盐离子液体为催化剂催化降解罗丹明B染液。 以脱色率和COD来表征染料的降解效果,分别探讨了离子液体中阳离子碳链长度、催化剂用量、光照时间和罗丹明B的初始浓度等因素对光降解罗丹明B的影响。 结果表明,其中[P(C14H29)(C6H13)3]3-PW12O40离子液体的催化效果最好,在催化剂用量为0.3 g时,3 h内50 mL 8.35×10-5 mol/L罗丹明B的降解率可达到95%以上,催化剂重复使用5次后,脱色率仍可达到97%以上。  相似文献   

18.
贾镇  张关丽  李毅  李永  汤磊  樊玲玲 《化学通报》2024,87(1):110-117
为了提高丁苯酞的抗血小板凝集活性,以6-氨基丁苯酞为起始原料,经重氮化/还原、环化、水解、脱氯、醚化和磺酰化反应合成了20个新型的丁苯酞-哒嗪酮衍生物,其结构经1H-NMR、13C-NMR和HRMS确证。体外抗血小板凝集活性测试结果表明:化合物6a、6b和6k对二磷酸腺苷(ADP)诱导的血小板凝集的抑制活性(IC50 = 44.9-180.0 μmol/L)优于先导化合物丁苯酞(IC50 = 1252 μmol/L)和阳性对照阿司匹林(IC50 = 1140 μmol/L);同时化合物 6b(IC50 = 63.6 μmol/L)和6k(IC50 = 191.9 μmol/L)对花生四烯酸(AA)诱导的血小板凝集也表现出显著的抑制活性。本研究为丁苯酞-哒嗪酮骨架在治疗缺血性脑卒中方面的研究提供了理论参考。  相似文献   

19.
应用稀土化合物:环烷酸钕Nd(naph)_3和二(2-乙基己基)磷酸钕Nd·(P_(204)_3分别与三异丁基铝Al(i-Bu)_3组成络合催化剂引发苯乙烯均聚及其与二乙烯苯共聚。适宜的聚合温度为50℃:[Nd]=3×10~(-5)mol/ml;[M]=3×10~(-3)mol/ml;Al/Nd=10(摩尔比),并且催化剂按以下次序配制:钕化合物→溶剂→苯乙烯→三异丁基铝,苯乙烯的转化率在90%以上。溶剂种类及聚合条件不同,制得的聚苯乙烯可为白色或黄色粉末状无定形聚合物,分子量几百至上万。聚合体系中添加PeCl_3能抑制黄色产生。在共聚反应中,二乙烯苯比苯乙烯显示较高的反应活性。  相似文献   

20.
以二苯醚为溶剂,4,4′-双(三氟乙烯氧基)苯砜(DTS)与4,4′-双(三氟乙烯氧基)联苯(DTB)为单体进行高温溶液共聚合.通过调控2种单体的加入比例(DTS:DTB为3:7~7:3)经[2π+2π]热环化反应,制备了一系列含联苯和砜基结构全氟环丁基共聚芳醚(PFCB-S-BP).采用凝胶渗透色谱(GPC)对该系列共聚芳醚的分子量及分子量分布进行了测定,结果表明两单体发生共聚合反应,合成的共聚芳醚数均分子量均大于1.4×10~4,且分子量分布较窄介于1.4~1.6之间.采用红外吸收光谱、核磁共振波谱等对PFCB-S-BP结构进行了表征.PFCB-S-BP的红外光谱中三氟乙烯基醚单体在1824 cm~(-1)处的特征吸收峰消失,而在957 cm~(-1)出现了强的全氟环丁基特征吸收峰,1315和1100 cm~(-1)处砜基的特征吸收峰强度随DTS/DTB比例的增加而变强.PFCB-S-BP的氢核磁谱图中,δ=7.9处为苯环上砜基邻位氢原子的信号峰,其强度随着反应单体DTS/DTB比例的增大而增强.氟核磁谱图(19F-NMR)中,化学位移在-127~-134的复杂多重峰是由于全氟环丁基环顺式和反式取代不同引起的.结果表明DTS与DTB单体发生了共聚合反应,成功合成了全氟环丁基聚芳醚PFCB-S-BP,并测试了其耐热性、热稳定性、溶解性等性能.PFCB-S-BP的5%热失重温度均高于470°C,玻璃化转变温度均高于145°C,具有较好的热稳定性.PFCB-S-BP可溶解于N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺和氯仿等常用有机溶剂,表现出良好的溶解性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号