首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   37篇
  国内免费   50篇
化学   88篇
晶体学   1篇
力学   10篇
综合类   9篇
数学   9篇
物理学   96篇
  2024年   3篇
  2023年   6篇
  2021年   8篇
  2020年   1篇
  2019年   6篇
  2018年   8篇
  2017年   9篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   5篇
  2012年   8篇
  2011年   8篇
  2010年   13篇
  2009年   6篇
  2008年   10篇
  2007年   11篇
  2006年   13篇
  2005年   14篇
  2004年   14篇
  2003年   7篇
  2002年   7篇
  2001年   9篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1955年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
1.
以2,3-二氨基吡啶和2,3-丁二酮为起始原料,经环化、催化氢化和亲核取代反应合成了10个新型哌啶并[2,3-b]哌嗪类衍生物(3a~3j),其结构经1H NMR、13C NMR和HR-MS确证。体外抗血小板聚集活性研究表明,化合物3d、3e、3g、3h和3j具有一定的抗血小板聚集作用,其中化合物3h(IC50=1.24mmol/L)的活性显著优于母体化合物川芎嗪(IC50=3.96mmol/L)和阳性药物阿司匹林(IC50=2.41mmol/L)。  相似文献   
2.
王志玲  李永 《化学通报》2021,84(9):977-980
以3-( 4-氟苯基) -1H-吡唑-5-甲酸乙酯为原料,与H2NNH2?H2O发生肼解生成3-( 4-氟苯基) -1H-吡唑-5-甲酰肼,再与CS2环化生成2-巯基噁二唑中间体,最后在巯基上进行烷基化反应合成了一系列新型的2-硫醚-5-吡唑基-1,3,4-噁二唑类化合物,并利用IR、1H NMR、HRMS等波谱技术对目标化合物结构进行了表征。该合成方法具有原料易得,后处理简便,收率较高的优点。  相似文献   
3.
氰基取代被认为是优化全小分子有机太阳能电池性能的可行方法. 然而,氰基取代对太阳能电池中电荷产生动力学的影响仍未得到探索. 本文光谱研究表明,在全小分子太阳能电池中,氰化给体中增强的分子间电荷转移相互作用会显著促进共混物中的电子转移. 实验发现,在氰基取代给体中,分子间相互作用引起的离域激发,在混合物中会进行超快电子转移. 相比之下,在没有氰基取代的给体中剩余的局域激发态,并没有积极参与电荷分离. 此发现很好地解释了为何氰化取代给体的共混物器件的性能会得到提升,表明可以通过调控分子间相互作用、来优化全小分子器件性能.  相似文献   
4.
设计合成了3种主链相同、侧基不同的Donor(D)-π-Acceptor(A)型共轭聚合物:聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-氰基苯基)-9H-咔唑)](PBDTCz-CN)、聚[(4,8-二辛氧基苯[1,2-b;3,4-b′]二噻吩)-(9-(4-醛基苯基)-9H-咔唑)](PBDTCz-CHO)和聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-硝基苯基)-9H-咔唑)](PBDTCz-NO_2)。通过调变侧基上的受体基团,比较了氰基、醛基、硝基对聚合物光学和电学性能的影响,讨论了影响聚合物光电转换效率的主要因素。3种聚合物的光学带隙和线性吸收系数依次分别为2.32 eV,152.0 L/(g·cm);2.43 eV,58.5 L/(g·cm)和2.25 eV,85.5 L/(g·cm)。在这些聚合物中,彼此间的最高占据分子轨道(HOMO)能级差距很小,PBDTCz-NO_2的最低未占据分子轨道(LUMO)能级最低(-3.38eV)。在100 W/m~2模拟太阳光的照射下,基于这些聚合物的光伏器件(器件结构:ITO/PEDOT:PSS/Polymer:[70]PCBM(1:2)/Ca/A1)的光电转换效率分别为0.44%(PBDTCz-CN)、0.001 8%(PBDTCz-CHO)和0.23%(PBDTCz-NO_2)。低的光电转换效率主要归因于低的短路电流,而影响短路电流的主要原因有自身吸光性能的限制和弱的π-π堆砌作用。  相似文献   
5.
微流控芯片测定盐酸金刚烷胺片中的盐酸金刚烷胺   总被引:1,自引:0,他引:1  
建立了微流控芯片非接触电导检测片剂中盐酸金刚烷胺的分析方法.对缓冲液和添加剂的种类及浓度、分离电压、进样时间等进行了优化.实验采用1 mmol/L HAc+2 mmol/L NaAc(pH 4.5)+0.1 mmol/LSDS的缓冲体系,于2.00kV的分离电压下进样10 s,在1 min内实现了盐酸金刚烷胺的快速检测...  相似文献   
6.
耐热梯度功能材料的热应力研究进展   总被引:25,自引:0,他引:25  
李永  马淑雅等 《力学进展》2000,30(4):571-580
介绍了梯度功能材料的概念和开发背景:回顾了近些年来在梯度功能材料热应力研究方面所取得的研究成果,并对梯度功能材料的发展趋势作一展望.着重论述了梯度功能材料在热应力分析领域的研究现状及其应用前景  相似文献   
7.
New lead-free ceramics (Lio.12Na0.88) (Nbo.9-x Ta0.10 Sbx) 03 (0.01 × 0.06) are synthesized by solid-state reaction method. The dielectric, piezoelectric and ferroelectric properties of the ceramics are studied. The dielectric constant dependence with temperature and frequency of the ceramic specimen with x = 0.04 shows typical characteristics of relaxor ferroelectrics, and the Vogel-Fulcher relationship is fulfilled. The dielectric behaviour and its relation to the phase transition phenomena are discussed. The polarization hysteresis loops at room temperature are also measured.  相似文献   
8.
李永  张志民 《应用数学和力学》2005,26(11):1307-1313
非均质、各向异性材料梯度多墙结构充分利用了材料性质连续、渐进、变化的物理力学性能,现已广泛应用于飞行机翼结构和汽车轻量化结构.在层合板屈曲理论的基础上,针对梯度多墙结构这一具体结构形式,采用当量刚度方法,建立了相应的本构关系和非线性屈曲控制方程,求解得到不同复杂边界条件及组合载荷下的屈曲临界载荷,通过试验分析验证,计算结果可以较好地满足工程设计.研究结果表明:梯度材料能有效地减小界面中的应力集中,减弱材料中初始缺陷的作用,从而不同程度地提高了材料的强度和韧性.  相似文献   
9.
Zn(BTZ)2白色有机电致发光材料的合成及其器件制备   总被引:10,自引:1,他引:9       下载免费PDF全文
以PCl3为脱水剂,将邻氨基硫酚与水杨酸脱水环化合成出2-(2-羟基苯基)苯并噻唑,并进一步将所得产物与乙酸锌反应合成出2-(2-羟基苯基)苯并噻唑螯合锌(Zn(BTZ)2)材料。以该配合物作为发光层制备出结构为ITO/PVK:TPD/Zn(BTZ)2/Al近白色电致发光器件,其色坐标位于白场之内(x=0.242,y=0.359),在驱动电压为16V时,亮度达3200cdm2,对应的量子效率为0.32%。进一步在Zn(BTZ)2中掺入橙红色染料Rubrene,制成ITO/PVK:TPD/Zn(BTZ)2:Rubrene/Al结构器件,实现了纯白色发光(色坐标值:x=0.324,y=0.343),非常接近于白色等能点,且量子效率达0.47%。最后对上述器件的发光和电学性能进行了深入的研究和探讨。  相似文献   
10.
采用分步傅里叶方法模拟了初始啁啾对光子晶体光纤中超连续谱产生的影响.根据光纤长度,将光子晶体光纤中脉冲的演化分成初始展宽、剧烈展宽和饱和展宽三个阶段.通过讨论啁啾脉冲和无初始啁啾脉冲在各阶段演化的区别,发现啁啾只在初始展宽和剧烈展宽阶段对光谱有影响,当β2C<0时啁啾有利于光谱的展宽,当β2C>0时则刚好相反,在饱和展宽阶段啁啾不再对光谱产生影响.要想利用啁啾脉冲来获得较宽的光谱,必须选择合适的光纤长度,使输出的脉冲处于剧烈展宽阶段.这为利用啁啾脉冲在光子晶体光 关键词: 超连续谱 光子晶体光纤 分步傅里叶法 啁啾  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号