首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立离子色谱法同时测定水产品企业加工用水中10种阴离子F-、ClO_(2)^(-)、BrO_(3)^(-)、Cl^(-)、ClO_(3)^(-)、NO_(2)^(-)、Br^(-)、NO_(3)^(-)、SO_(4)^(2-)和PO_(4)^(3-)。选用IonPac®AS19色谱柱(250 mm×4 mm),用KOH溶液梯度淋洗,以抑制电导检测器进行测定。10种阴离子在各自的质量浓度范围内与色谱峰面积呈良好的线性关系,相关系数均不小于0.9990,方法检出限为0.0005~0.005 mg/L。6次重复测定结果的相对标准偏差为0.95%~4.69%,样品加标回收率为80.0%~97.2%。该方法灵敏度高、简便、快速,适用于水产品企业加工用水中10种阴离子F^(-)、Cl^(-)、NO_(2)^(-)、Br^(-)、BrO_(3)^(-)、NO_(3)^(-)、SO_(4)^(2-)、PO_(4)^(3-)、ClO_(2)^(-)和ClO_(3)^(-)的检测。  相似文献   

2.
将坎地沙坦酯原料药约100 mg用水超声提取15 min,离心10 min.取上清液过0.22μm滤膜,收集滤液,过预先活化好的C_(18)固相萃取小柱.洗脱液流入离子色谱仪,在IonPac AS18阴离子交换色谱柱上分离,柱温为35℃.以氢氧化钾溶液进行程序淋洗,以电导检测器进行检测.结果表明,N_(3)^(-)和Br^(-)与水中NO_(3)^(-)的分离度均大于1.50,原料药及溶剂水中其他杂质离子的干扰较小;N_(3)^(-)和Br^(-)的质量浓度在一定范围内与其对应的峰面积呈线性关系,检出限(3S/N)分别为0.00070,0.0014 mg·L^(-1);对空白样品进行3个浓度水平的加标回收试验,N_(3)^(-)和Br^(-)的回收率分别为88.2%~93.5%和101%~104%,测定值的相对标准偏差(n=6)分别为2.6%和0.55%;方法用于实际样品分析,取得了满意结果.  相似文献   

3.
建立阴离子分离柱离子色谱法测定纯净水中F~-,BrO_3~-,Cl~-,NO_2~-,Br~-,NO_3~- 6种微量阴离子的方法。以SH-AC-1型阴离子柱为分离柱,柱箱温度为35℃,以1.0 mmol/L Na_2CO_3为淋洗液,流量为1.5 mL/min。F~-,BrO_3~-,Cl~-,NO_2~-,Br~-,NO_3~-的线性范围分别为20~320,40~800,40~640,10~200,50~1 000,50~1 000μg/L,线性相关系数均大于0.999,检出限为0.7~7.5μg/L,加标回收率在95.0%~106.3%之间,测定结果的相对标准偏差为1.41%~4.27%(n=5)。该方法测定结果准确、可靠,操作简便、快速,适用于纯净水中BrO_3~-,F~-,Cl~-,NO_2~-,Br~-,NO_3~- 6种阴离子的测定。  相似文献   

4.
提出了固相萃取-超高液相色谱-串联质谱法同时测定植物油中百草枯和敌草快残留量的方法。取4.00 g样品,以10 mL正己烷为分散剂,涡旋1 min,加入20 mL体积比1∶1的0.1 mol·L^(-1)盐酸溶液-甲醇混合液,涡旋振荡提取20 min,离心5 min,弃去上层液体。取提取液15 mL经ProElut PXC固相萃取柱(用3 mL甲醇、3 mL水活化)净化,依次用3 mL水、3 mL甲醇淋洗,用3 mL体积比1∶1的2 mol·L^(-1)氯化铵溶液-甲醇混合液洗脱。流出液过0.22μm尼龙膜,滤液采用超高效液相色谱-串联质谱法测定其中百草枯和敌草快的含量。以Dikma HILIC色谱柱为固定相,以不同体积比的10 mmol·L^(-1)甲酸铵溶液(pH 3.0)-乙腈的混合液为流动相进行梯度洗脱,质谱分析采用多反应监测(MRM)模式,外标法定量。结果表明,百草枯和敌草快标准曲线的线性范围分别为2.0~200.0μg·L^(-1)、1.0~100.0μg·L^(-1),检出限(3S/N)分别为0.6,0.3μg·kg^(-1)。按照标准加入法进行回收试验,回收率为80.5%~93.6%,测定值的相对标准偏差(n=6)均小于10%。方法用于30个植物油样品分析,仅在3个样品中检出敌草快,检出量最高达10.5μg·kg^(-1)。  相似文献   

5.
采用自制四氧化三锰纳米粒子固相萃取-电感耦合等离子体质谱法测定蔬菜中铅和铜的含量。优化的固相萃取条件如下:(1)样品溶液的pH为4.0;(2)样品溶液的流量为1.0mL·min^(-1);(3)四氧化三锰纳米粒子的用量为50mg;(4)洗脱剂为3mol·L^(-1)盐酸溶液,用量为2mL;(5)样品溶液的体积为20mL。铅和铜的线性范围依次为0.01~5.0,0.02~1.0μg·L^(-1),检出限(3s/k)依次为4,8ng·L^(-1)。加标回收率为80.0%~108%,测定值的相对标准偏差(n=7)为0.94%~3.2%。  相似文献   

6.
提出了均相液液萃取-数字成像比色法测定水中痕量六价铬的方法。取2.5 mL水样,依次加入0.125 mL十二烷基硫酸钠溶液(20 g·L^(-1))、0.3 mL硫酸溶液(0.5 mol·L^(-1))和0.125 mL含0.04 mol·L^(-1)二苯碳酰二肼的丙酮溶液,摇匀,反应5 min。再用60μL邻苯二甲酸二甲酯和400μL异丙醇的混合液进行萃取,涡旋,离心,通过智能手机比色装置中的Color Grab软件读取萃取层的绿(G)值。结果显示:六价铬标准曲线的线性范围为4~60μg·L^(-1),检出限(3s/k)为1μg·L^(-1);对实际水样进行加标回收试验,本方法所得六价铬测定值与国家标准方法GB 7467-1987的基本一致,回收率为87.8%~109%,测定值的相对标准偏差(n=6)为2.4%~3.7%。  相似文献   

7.
采用自动快速燃烧炉-离子色谱法测定煤炭中氯的含量。优化的试验条件如下:(1)燃烧管进口温度为950℃,出口温度为1 050℃;(2)称样量为10 mg;(3)以4.5 mmol·L^(-1)碳酸钠-1.4mmol·L^(-1)碳酸氢钠混合液为吸收液。以阴离子色谱柱为分离柱,4.5 mmol·L^(-1)碳酸钠-1.4mmol·L^(-1)碳酸氢钠混合液为淋洗液,抑制型电导检测器测定。以PO_4^(3-)作为内标物,氯的线性范围为0.5~20μg·L^(-1),检出限(3S/N)为0.086mg·L^(-1)。方法应用于煤炭标准物质和实际样品的分析,测定值与认定值相符,测定值与国家标准方法的测定结果相符,测定值的相对标准偏差(n=6)为2.4%~7.5%。  相似文献   

8.
提出了固相萃取-衍生化-气相色谱-质谱法同时测定环境水中双酚A(BPA)和9种C4~C9烷基酚类化合物(APs,包括4-叔丁基苯酚、4-丁基苯酚、4-戊基苯酚、4-己基苯酚、4-叔辛基苯酚、4-庚基苯酚、壬基酚、4-辛基苯酚和4-壬基苯酚)含量的方法。取500 mL水样,用50%(体积分数)盐酸溶液调节pH小于2,以50 mL·min^(-1)速率通过以苯乙烯/二乙烯苯聚合物为吸附剂的SDB-XC固相萃取膜,用5 mL丙酮和10 mL二氯甲烷洗脱。收集洗脱液,加入1 mL正己烷,经10 g无水硫酸钠脱水,用旋转蒸发仪浓缩至约0.5 mL后转移至1 mL容量瓶中。用少量二氯甲烷洗涤浓缩瓶,将洗涤液合并至容量瓶中,再依次加入100μL内标混合溶液和100μL衍生试剂,用二氯甲烷定容至1 mL,室温衍生1 h。上述溶液中各目标物在气相色谱仪中以程序升温和程序升压方式分离,在质谱仪中以选择离子监测模式测定,内标法定量。结果显示:BPA和9种APs标准曲线的线性范围为5.000~500.0μg·L^(-1),检出限为0.002~0.006μg·L^(-1);各目标物在空白加标水样中测定值的相对标准偏差(n=6)为1.2%~15%;方法用于实际地表水、生活污水和工业废水分析,均检出壬基酚和BPA,地表水和生活污水中还检出4-叔辛基苯酚,检出量为0.005~0.657μg·L^(-1),其余APs未检出,实际样品中BPA和9种APs的加标回收率为73.4%~125%。  相似文献   

9.
0.500 0g醋酸阿比特龙原料药样品经5.0mL硝酸和1.0mL高氯酸微波消解后,加热至近干,将消解液用水定容至25mL,采用电感耦合等离子体质谱法测定其中钯的残留量。采用带有碰撞反应池的氦调谐模式,以相对丰度较高、抗干扰更强的^(105 )Pd作为同位素,以^(115)In作为内标。钯的线性范围在80.0μg·L^(-1)以内,检出限(3.3s/k)为0.020 8μg·L^(-1)。方法用于醋酸阿比特龙原料药样品的分析,测定值的相对标准偏差(n=6)为1.2%,加标回收率为94.0%~100%。  相似文献   

10.
青霉素G钠(NaBP)溶液的常规拉曼光谱信号微弱.将制备的浓缩银纳米粒子(AgNPs)20μL与不同浓度(1×10^(-9)~1×10^(-1)mol·L^(-1))的青霉素G钠溶液(pH 6)20μL混合,所得混合液的表面增强拉曼光谱(SERS)信号显著增强,在上述混合液中加入1×10^(-2)mol􀅰L^(-1)硫酸镁溶液8μL,青霉素G钠SERS增强效果最佳.据此,提出了以AgNPs为基底,硫酸镁为凝聚剂,采用SERS测定青霉素G钠含量的方法,并用于加标牛奶样品的检测.结果表明,青霉素G钠浓度为1×10^(-8)~1×10^(-3)mol·L^(-1)时,其浓度的对数值与相应的SERS信号强度呈线性关系,检出限(3s/k)为8.2×10^(-9)mol·L^(-1).按标准加入法进行回收试验,回收率为80.0%~96.0%,测定值的相对标准偏差(n=5)为2.3%~6.5%.  相似文献   

11.
采用液相色谱-串联质谱法测定血中毒芹碱、金雀花碱、秋水仙碱和α-茄碱等4种食源性植物毒素的含量。0.2mL血样用0.8mL乙腈去除血红蛋白,离心后,上层清液经0.22μm有机系微孔滤膜过滤。以Hypurity C_(18)色谱柱为分离柱,0.2%(体积分数)乙酸溶液(含有5mmol·L^(-1)乙酸铵,pH为4.0)和甲醇(20+80)的混合液为流动相进行等度洗脱,串联质谱分析中采用全扫描和选择反应监测模式。4种食源性植物毒素的质量浓度均在5.0~500μg·L^(-1)内与其对应的峰面积呈线性关系,检出限(3S/N)均为2.0μg·L^(-1),测定下限(10S/N)均为5.0μg·L^(-1)。在50,200,500μg·L^(-1)等3个浓度水平进行加标回收试验,回收率为84.5%~111%,测定值的相对标准偏差(n=5)为1.5%~6.2%。  相似文献   

12.
采用膜透析处理样品-离子色谱法测定奶粉中亚硝酸盐和硝酸盐的含量。利用截留分子量为(3.5~5)kD的透析膜处理奶液,透析液经0.22μm滤膜过滤后,以不同浓度的氢氧化钾溶液为淋洗液,用紫外检测器在波长210nm处分别测定NO_2~-和NO_3~-,其线性范围依次为0.02~0.5mg·L~(-1),0.2~5.0mg·L~(-1),检出限(3S/N)依次为0.01,0.008 mg·L~(-1)。经用于实样分析,NO_2~-和NO_3~-测定值的相对标准偏差(n=6)分别为2.7%,1.9%。加标回收率在90.7%~105%之间。  相似文献   

13.
提出新型高通量离子色谱仪快速测定水利工程水样中5种阳离子Na^+、NH_4^+、Mg^(2+)、Ca^(2+)和K^+的含量的方法。采用TSKgel Super IC-CR阳离子交换柱,以2.2 mmol·L^(-1)甲基磺酸和1.00 mmol·L^(-1)18冠醚6的混合液为淋洗液,流量为0.7 mL·min^(-1),柱温为40℃,凝胶抑制电导检测,可在18 min内完成对5种阳离子的分析。5种无机阳离子的质量浓度在一定范围内与其峰面积呈线性关系,Na^+、NH_4^+、Mg^(2+)、Ca^(2+)和K^+的检出限(3S/N)分别为7.1,6.3,9.5,10.0,8.3μg·L^(-1),水样的加标回收率为95.3%~104%,相对标准偏差(n=5)为0.26%~4.0%。  相似文献   

14.
以甲醇为提取剂,提出了吹扫捕集-气相色谱-质谱法测定土壤中28种挥发性有机化合物(VOCs)含量的方法。称取土壤样品5.0 g,加入甲醇10 mL,振荡静置后吸取250μL提取液至吹扫瓶中,加入一定量的混合内标溶液,用水定容至10 mL,其中内标质量浓度为10μg·L^(-1)。结果显示:28种VOCs标准曲线的线性范围均为1~100μg·L^(-1),检出限为7.4~15.2μg·kg^(-1);对空白样品进行加标回收试验,回收率为79.8%~108%,测定值的相对标准偏差(n=6)为1.9%~12%。方法用于两份实际土壤样品分析,三氯甲烷的测定值为22.6 mg·kg^(-1)和24.0 mg·kg^(-1),其余27种VOCs均未检出。  相似文献   

15.
在顶空瓶中加入水样10.0 mL、氯化钠3 g和20.0 mg·L^(-1)内标溶液10.0μL,选择涂层为120μm二乙烯苯/聚二甲基硅氧烷的箭形固相微萃取头,于50℃萃取30 min,脱附的气体用DB-1毛细管色谱柱分离,质谱仪检测,内标法定量。结果显示:松节油的主要成分为α-蒎烯,还有少量莰烯、β-蒎烯和柠檬烯等;松节油标准曲线的线性范围为5.0~100.0μg·L^(-1),检出限(3.143s)为0.6μg·L^(-1);对空白样品进行加标回收试验,回收率为95.9%~98.0%,测定值的相对标准偏差(n=6)为3.7%~4.3%;方法用于实际样品分析,结果均未检出松节油。  相似文献   

16.
提出了电感耦合等离子体质谱法(ICP-MS)测定丙氨酰谷氨酰胺注射液中铝含量的方法。移取供试品7.5 mL共6份,分别置于6个15 mL塑料离心管中,各加入一定量的铝标准溶液,再用5%(体积分数)硝酸溶液稀释至刻度,摇匀,经0.22μm水膜过滤,得到供试品加标溶液系列,标准加入法定量。ICP-MS分析中选择雾化气稀释高基体样品引入-氦气碰撞(HMI-He)模式。结果显示:某供试品加标溶液中铝的质量浓度在30.00μg·L^(-1)内与其对应的响应值呈线性关系,检出限(3s)为0.88μg·L^(-1);对供试品加标溶液进行精密度试验,铝测定值的相对标准偏差(n=6)均小于2.0%;对同一供试品进行3个浓度水平的加标回收试验,回收率为101%~106%。方法用于12批丙氨酰谷氨酰胺注射液的分析,铝的检出量为20.00~31.22μg·L^(-1)。  相似文献   

17.
为了提高金属纳米粒子在石墨烯片上的分散度,通过组氨酸功能化石墨烯量子点(His-GQD)作为桥梁,设计合成银铜双金属/His-GQD/石墨烯杂化物(AgCu/His-GQD/G)。His-GQD通过π-π堆积作用固定到氧化石墨烯上,然后与银离子和铜离子结合形成复合物,最后在氮气保护下热还原获得AgCu/His-GQD/G。形成的杂化物表现出独特的三维结构,且银、铜纳米粒子均匀分散在石墨烯片上。基于该杂化物构建了电化学适配体传感器,适配体与杂化物上的银、铜纳米粒子通过Ag-N和Cu-N键连接而修饰到电极表面上,用于毒死蜱、克百威和多菌灵的测定,表现出高的灵敏度和选择性。毒死蜱、克百威和多菌灵标准曲线的线性范围分别为1.00×10^(-2)~1.00×10^(3)pmol·L^(-1)、1.00×10^(-1)~1.00×10^(4)pmol·L^(-1)和1.00~1.00×10^(6)pmol·L^(-1),检出限(3S/N)分别为3.2×10^(-3)pmol·L^(-1)、2.3×10^(-2)pmol·L^(-1)和2.9×10^(-1)pmol·L^(-1)。该适配体传感器用于黄瓜样品中克百威、毒死蜱和多菌灵的测定,仅检出多菌灵,检出量为1.21 pmol·L^(-1)和1.25 pmol·L^(-1);并按标准加入法进行回收试验,回收率为99.3%~100%。  相似文献   

18.
提出了柱前衍生化顶空-气相色谱-质谱法测定坚果和梅类食品中氰化物(以CN-计,下同)含量的方法。取样品2.0000 g,加1.0 g·L^(-1)氢氧化钠溶液约60 mL,混匀,超声提取20 min,冷却至室温后用1.0 g·L^(-1)氢氧化钠溶液定容至100 mL,过滤。取5 mL续滤液置于顶空瓶中,加入17%(体积分数)磷酸溶液200μL,混合后加入10 g·L^(-1)氯胺T溶液200μL,于55℃衍生30 min。以DB-624UI毛细管色谱柱为固定相,采用气相色谱-质谱法测定所得溶液中氰化物的含量。结果显示:CN-的质量浓度在200μg·L^(-1)以内与对应的氰化物衍生物的峰面积呈线性关系,检出限(3S/N)为0.01 mg·kg^(-1)。按照标准加入法进行回收试验,回收率为96.8%~103%,测定值的相对标准偏差(n=6)均小于4.0%。方法与国家标准方法GB 5009.36-2016中分光光度法进行对比,两种方法所得测定结果基本一致,无显著性差异。方法用于实际样品分析,结果显示坚果和梅类食品中都检出氰化物,建议将氰化物添加到GB 2762-2022的食品中污染物限量名录中,对其进行严格控制。  相似文献   

19.
在2 mL尿液样品中加入4 mg·L^(-1)混合内标溶液0.01 mL、不低于850 U·mL^(-1)的β-葡萄糖醛酸酶溶液和1 mol·L^(-1)乙酸铵溶液0.5 mL,充分振荡后于37℃水解2.0 h,降至室温,用乙腈定容至5 mL,冷冻2 h,恢复至常温后,过0.22μm有机滤膜.采用高效液相色谱-串联质谱法同时测定其中12种邻苯二甲酸酯类代谢物的含量,基质匹配法消除基质干扰,内标法定量.结果表明,12种邻苯二甲酸酯类代谢物工作曲线的线性范围均为1.00~200μg·L^(-1),检出限(3S/N)为0.05~1.88μg·L^(-1).按标准加入法进行回收试验,回收率为75.3%~114%,测定值的相对标准偏差(n=6)为1.5%~10%.方法用于测定35份儿童尿液样品,其中检出11种邻苯二甲酸酯类代谢物,邻苯二甲酸单异癸酯(MDP)未检出.  相似文献   

20.
提出了石墨炉原子吸收光谱法测定食盐中镉含量的方法。称取食盐样品0.5 g,用1%(体积分数,下同)硝酸溶液溶解并定容至50 mL,摇匀,配制成待测样品溶液。以1%硝酸溶液为溶剂,配制成含10 g·L^(-1)磷酸二氢铵和10 g·L^(-1)抗坏血酸的基体改进剂。测定时,采用自动进样器吸取1.0μL基体改进剂至20μL待测样品溶液中。优化后的石墨炉升温条件:干燥温度为120℃,灰化温度为350℃,原子化温度为700℃,净化温度为2 700℃。结果显示:镉的质量浓度在0.1~2.0μg·L^(-1)内与其对应的吸光度呈线性关系,检出限(3s/k)为0.001 mg·kg^(-1);对含不同质量分数镉的氯化钠加标溶液进行测定,测定值的相对标准偏差(n=6)均小于4.0%;对不同类型的食盐样品进行加标回收试验,镉回收率为92.0%~101%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号