首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this paper, we propose a model with impulsive control of epidemics for pest management. By using Floquet's theorem, small‐amplitude perturbation skills and comparison theorem, we show that there exists a globally asymptotically stable susceptible pest‐eradication periodic solution when the release amount of infective pests is larger than some critical value. However, when the amount of infective pests released is less than this critical value, the system is shown to be permanent, which implies that the trivial periodic susceptible pest‐eradication solution loses its stability. Further, the existence of a positive periodic endemic solution and other rich dynamics are also studied by numerical simulation. Therefore, we can use the amount of release of infective pests to control susceptible pests at desirable low levels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
According to biological strategy for pest control, we investigate the dynamic behavior of a pest management SEI model with saturation incidence concerning impulsive control strategy-periodic releasing infected pests at fixed times. We prove that all solutions of the system are uniformly ultimately bounded and there exists a globally asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. When the impulsive period is larger than some critical value, the stability of the pest-eradication periodic solution is lost; the system is uniformly permanent. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by period-doubling cascade, symmetry-breaking pitchfork bifurcation, quasi-periodic oscillate, chaos, and non-unique dynamics.  相似文献   

3.
In this paper, the bifurcation of nontrivial periodic solutions for an impulsively perturbed system of ordinary differential equations which models an integrated pest management strategy is studied by means of a fixed point approach. A biological control, consisting in the periodic release of infective pests, and a chemical control, consisting in pesticide spraying, are employed to maintain susceptible pests below an acceptable level. It is assumed that the biological and chemical control act with the same periodicity, but not in the same time. It is then shown that if the constant amount of infective pests released each time reaches a certain threshold value, then the trivial susceptible pest-eradication periodic solution loses its stability, which is transferred to a newly emerging nontrivial periodic solution.  相似文献   

4.
An impulsive SI model with Monod-Haldane functional response for pest control is proposed and investigated. First, we have proved that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. Otherwise, the above system can be permanent. Then, influences of impulsive perturbation including impulse period, the time of spraying pesticide and the quantity of releasing infective pests on the above system have been studied. Moreover, numerical simulations show that the system has rich dynamical behaviors. Finally, it is concluded that the approach of combining impulsive infective releasing with impulsive pesticide spraying is more effective than the classical one if the chemical control is adopted rationally.  相似文献   

5.
In this paper, we consider an integrated pest management model with disease in the pest and a stage structure for its natural predator, which is subject to impulsive and periodic controls. A nonlinear incidence rate expressed in an abstract form, is used to describe the propagation of the disease, which is spread through the periodic release of infective pests, the functional response of the mature predator also being given in an abstract, unspecified form. Sufficient conditions for the local and global stability of the susceptible pest-eradication periodic solution are found by means of Floquet theory and comparison methods, the permanence of the system also being discussed. These stability conditions are shown to be biologically significant, being reformulated as balance conditions for the susceptible pest class.  相似文献   

6.
基于害虫的生物控制和化学控制策略,考虑到化学杀虫剂对天敌的影响,利用脉冲微分方程建立了在不同的固定时刻分别喷洒杀虫剂和释放天敌的具有时滞的第III功能反应的捕食者-食饵脉冲动力系统.证明了当脉冲周期小于某个临界值时,系统存在一个渐进稳定的害虫灭绝周期解,否则系统持续生存.并用Matlab软件对害虫灭绝周期解及害虫周期爆发现象进行了数值模拟.  相似文献   

7.
In pest control, there are only a few papers on mathematical models of the dynamics of microbial diseases. In this paper a model concerning biologically-based impulsive control strategy for pest control is formulated and analyzed. The paper shows that there exists a globally stable susceptible pest eradication periodic solution when the impulsive period is less than some critical value. Further, the conditions for the permanence of the system are given. In addition, there exists a unique positive periodic solution via bifurcation theory, which implies both the susceptible pest and the infective pest populations oscillate with a positive amplitude. In this case, the susceptible pest population is infected to the maximum extent while the infective pest population has little effect on the crops. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamic, which implies that this model has more complex dynamics, including period-doubling bifurcation, chaos and strange attractors.  相似文献   

8.
基于喷洒杀虫剂及释放病虫的脉冲控制害虫模型   总被引:1,自引:1,他引:0  
基于喷洒杀虫剂及释放病虫的综合控制害虫策略,建立了具有脉冲控制的微分方程模型.利用脉冲微分方程的F loquet理论、比较定理,证明了害虫灭绝周期解的全局渐近稳定性与系统的持久性.  相似文献   

9.
研究一类具有脉冲效应和非单调功能反应的两个捕食者一个食饵害虫控制系统.通过脉冲微分方程的Floquet理论和小幅扰动方法,证明了当脉冲周期小于某个临界值时,系统存在一个渐近稳定的害虫根除周期解,否则系统是持续生存的.最后,通过数值实例,给出了一简单讨论.  相似文献   

10.
In an ecosystem multiple prey species often share a common predator and the interactions between the preys are neutral. In view of these facts and based on a multiple species prey–predator system with Holling IV and II functional responses, an impulsive differential equation to model the process of periodically releasing natural enemies and spraying pesticides at different fixed times for pest control is proposed and investigated. It is proved that there exists a locally asymptotically stable pest-eradication periodic solution under the assumption that the impulsive period is less than some critical value (or the release amount of the predator is greater than another critical value). Permanence conditions are established when the impulsive period is greater than another critical value (or the release amount of the predator is less than some critical value). Numerical results show that the system we consider has more complex dynamics including period solution, quasi-periodic oscillation, chaos, intermittency and crises.  相似文献   

11.
In this paper, an impulsive predator–prey model with disease in the prey is investigated for the purpose of integrated pest management. In the first part of the main results, we get the sufficient condition for the global stability of the susceptible pest-eradication periodic solution. This means if the release amount of infective prey and predator satisfy the condition, then the pest will be doomed. In the second part of the main results, we also get the sufficient condition for the permanence of the system. This means if the release amount of infective prey and predator satisfy the condition, then the prey and the predator will coexist. In the last section, we interpret our mathematical results. We also point out some possible future work.  相似文献   

12.
Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R0 < 1. While R0 > 1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed.  相似文献   

13.
In this paper, by using pollution model and impulsive delay differential equation, we investigate the dynamics of a pest control model with age structure for pest by introducing a constant periodic pesticide input and releasing natural enemies at different fixed moment. We assume only the pests are affected by pesticide. We show that there exists a global attractive pest-extinction periodic solution when the periodic natural enemies release amount μ1 and pesticide input amount μ2 are larger than some critical value. Further, the condition for the permanence of the system is also given. By numerical analyses, we also show that constant maturation time delay, pulse pesticide input and pulse releasing of the natural enemies can bring obvious effects on the dynamics of system. We believe that the results will provide reliable tactic basis for the practical pest management.  相似文献   

14.
具有脉冲效应和综合害虫控制的捕食系统   总被引:8,自引:1,他引:7  
本文通过生物控制和化学控制提出了具有周期脉冲效应与害虫控制的捕食系统. 系统保护天敌避免灭绝,在一些条件下可以使害虫灭绝.就是说当脉冲周期小于某一临界值时,存在全局稳定害虫灭绝周期解.脉冲周期增大大于临界值时,平凡害虫灭绝周期解失去稳定性并产生正周期解,利用分支理论来研究正周期解的存在性.进而,利用李雅普诺夫函数和比较定理确定了持续生存的条件.  相似文献   

15.
According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator–prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.  相似文献   

16.
In this work, we consider a pest management SI model with impulsive release of infective pests and spraying pesticides. We prove that all solutions of the investigated system are uniformly ultimately bounded and the pest-extinction periodic solution is globally asymptotically stable when some condition is satisfied. We also obtain the permanent condition of the system. It is concluded that the approach of combining impulsive release of infective pests with impulsive spraying pesticides provides reliable tactic basis for the practical pest management.  相似文献   

17.
魏春金  陈兰荪 《数学研究》2008,41(4):393-400
本文考虑了一类食饵具有流行病和阶段结构的脉冲时滞捕食模型.利用脉冲时滞微分方程的相关理论和方法,获得易感害虫根除周期解全局吸引的充分条件以及当脉冲周期在一定范围内时,天敌与易感害虫可以共存且易感害虫的密度可以控制在经济危害水平E(EIL)之下.我们的结论为现实的害虫管理提供了可靠的策略依据.  相似文献   

18.
In an ecosystem, multiple predator species often share a common prey and the interactions between the predators are neutral. In view of this fact, we propose a three-species prey-predator system with the functional responses and impulsive controls to model the process of pest management. It is proved that the system has a locally stable pest-eradication periodic solution under the assumption that the impulsive period is less than some critical value. In particular, two single control strategies (biological control alone or chemical control alone) are proposed. Finally, we compare three pest control strategies and find that if we choose narrow-spectrum pesticides that are targeted to a specific pest’s life cycle to kill the pest, then the combined strategy is preferable. Numerical results show that our system has complex dynamics including period-doubling bifurcation, quasi-periodic oscillation, chaos, intermittency and crises. This work is supported by National Natural Science Foundation of China (10171106).  相似文献   

19.
考虑了一个害虫和天敌都有阶段结构及具有饱和反应率的阶段时滞脉冲捕食者-食饵模型,利用人工周期定量地投放有病的害虫和天敌去治理害虫.借助脉冲时滞微分方程的相关理论和方法获得易感害虫根除周期解全局吸引的充分条件以及天敌与易感害虫可以共存且易感害虫的密度可以控制在经济危害水平之下的充分条件.我们的结论为现实的害虫管理提供了可靠的策略依据.  相似文献   

20.
讨论了具有非线性传染率与脉冲控制的害虫管理S-I传染病模型,此模型考虑的是脉冲投放病虫和喷洒农药.不但得到了系统的所有解的一致完全有界,而且得到了害虫灭绝的边界周期解的全局渐进稳定和系统的一致持久的条件.为实际的害虫管理提供了可靠的理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号