首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In this paper, we introduce a mutual interference age structured predator-prey (natural enemy-pest) model with constant maturation time delay for the prey, and then propose a pest management strategy by constant periodic releasing for the predator. We show that there exists a global attractive pest-eradication periodic solution when the periodic releasing amount μ1 and μ2 are lager than some critical value. Further, to obtain a more effective pest control strategy, we give the conditions (involving the estimate of μ1 and μ2) in which the model is uniformly permanent and the pest population is under the economic threshold level. We believe that the results will provide reliable tactic basis for the practical pest management.  相似文献   

2.
Based on the classical stage-structured model and Lotka–Volterra predator–prey model, an impulsive delayed differential equation to model the process of periodically releasing natural enemies at fixed times for pest control is proposed and investigated. We show that the conditions for global attractivity of the ‘pest-extinction’ (‘prey-eradication’) periodic solution and permanence of the population of the model depend on time delay. We also show that constant maturation time delay and impulsive releasing for the predator can bring great effects on the dynamics of system by numerical analysis. As a result, the pest maturation time delay is considered to establish a procedure to maintain the pests at an acceptably low level in the long term. In this paper, the main feature is that we introduce time delay and pulse into the predator–prey (natural enemy-pest) model with age structure, exhibit a new modelling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.  相似文献   

3.
Pulse-like pest management actions such as spraying pesticides and killing a pest instantly and the release of natural enemies at critical times can be modelled with impulsive differential equations. In practice, many pesticides have long-term residual effects and, also, both pest and natural enemy populations may have delayed responses to pesticide applications. In order to evaluate the effects of the duration of the residual effectiveness of pesticides and of delayed responses to pesticides on a pest management strategy, we developed novel mathematical models. These combine piecewise-continuous periodic functions for chemical control with pulse actions for releasing natural enemies in terms of fixed pulse-type actions and unfixed pulse-type actions. For the fixed pulse-type model, the stability threshold conditions for the pest eradication periodic solution and permanence of the model are derived, and the effects of key parameters including killing efficiency rate, decay rate, delayed response rate, number of pesticide applications and number of natural enemy releases on the threshold values are discussed in detail. The results indicate that there exists an optimal releasing period or an optimal number of pesticide applications which maximizes the threshold value. For unfixed pulse-type models, the effects of the killing efficiency rate, decay rate and delayed response rate on the pest outbreak period, and the frequency of control actions are also investigated numerically.  相似文献   

4.
For pest control in agriculture, we investigate the dynamics of a stage-structured predator-prey Gompertz system with impulsive spraying pesticide and releasing of natural enemies at different fixed moment. Using the stroboscopic map and comparison theorem, we obtain the sufficient conditions for the global attractivity of the mature predator-extinction periodic solution and the permanence of the system. Numerical simulations are inserted to verify the feasibility of the theoretical results, which show that the impulsive control plays a key role on the permanence of the system and also provide tactical basis for pest control.  相似文献   

5.
Based on spraying pesticide and introducing infected pest and natural enemy for pest control, an SI ecological epidemic model with different frequencies of pesticide applications and infected pests and natural enemy releases is proposed and studied. With spraying either more or less frequently than the releases, the threshold condition of existence and global attractiveness of susceptible pest extinction periodic solution is obtained. We investigate the effects of the pest control tactics on the threshold conditions. We also show that the system has rich dynamics including period-doubling bifurcations and chaos as the release period increases, which implies that the presence of impulsive intervention makes the dynamic behavior more complex. Finally, to see how the pesticide applications can be reduced, we develop a model involving periodic releases of natural enemies with chemical control applied only when the densities of the pest reaches the given Economic Threshold. It indicates that the hybrid method is the most effective method to control pest and the frequency of pesticide applications largely depends on the initial densities and the control tactics.  相似文献   

6.
In this paper, according to integrated pest management principles, a class of Lotka-Volterra predator-prey model with state dependent impulsive effects is presented. In this model, the control strategies by releasing natural enemies and spraying pesticide at different thresholds are considered. The sufficient conditions for the existence and stability of the positive order-1 periodic solution are given by the Poincaré map and the properties of the LambertW function.  相似文献   

7.
Combining biological and chemical control has been an efficient strategy to combat the evolution of pesticide resistance. Continuous releases of natural enemies could reduce the impact of a pesticide on them and the number to be released should be adapted to the development of pesticide resistance. To provide some insights towards this adaptation strategy, we developed a novel pest–natural enemy model considering both resistance development and inoculative releases of natural enemies. Three releasing functions which ensure the extinction of the pest population are proposed and their corresponding threshold conditions obtained. Aiming to eradicate the pest population, an analytic formula for the number of natural enemies to be released was obtained for each of the three different releasing functions, with emphasis on their biological implications. The results can assist in the design of appropriate control strategies and decision-making in pest management.  相似文献   

8.
The agricultural pests can be controlled effectively by simultaneous use (i.e., hybrid approach) of biological and chemical control methods. Also, many insect natural enemies have two major life stages, immature and mature. According to this biological background, in this paper, we propose a three tropic level plant–pest–natural enemy food chain model with stage structure in natural enemy. Moreover, impulsive releasing of natural enemies and harvesting of pests are also considered. We obtain that the system has two types of periodic solutions: plant–pest-extinction and pest-extinction using stroboscopic maps. The local stability for both periodic solutions is studied using the Floquet theory of the impulsive equation and small amplitude perturbation techniques. The sufficient conditions for the global attractivity of a pest-extinction periodic solution are determined by the comparison technique of impulsive differential equations. We analyze that the global attractivity of a pest-extinction periodic solution and permanence of the system are evidenced by a threshold limit of an impulsive period depending on pulse releasing and harvesting amounts. Finally, numerical simulations are given in support of validation of the theoretical findings.  相似文献   

9.
In the present paper the different releasing methods including constant releasing and proportional to the predator population are considered and analyzed. The effects of these releasing methods of natural enemies on dynamical behavior are investigated. We firstly take into account the model with an impulsive effect at fixed moments, and the results imply that under some conditions the pest may serve to extinction. Several types of attractors can coexist, with switch-like transitions among their attractors showing that varying dosages and frequencies of insecticide applications and the numbers of natural enemies released are crucial. Secondly, the model with unfixed moments is further investigated. Different periodic solutions also exist and the maximum amplitude of the host is always less than the economic threshold. Comparing the results obtained for the two models concludes that the proportional releasing predator has strong effects on the dynamical behavior.  相似文献   

10.
According to biological and chemical control strategy for pest, we investigate the dynamic behavior of a Lotka–Volterra predator–prey state-dependent impulsive system by releasing natural enemies and spraying pesticide at different thresholds. By using Poincaré map and the properties of the Lambert WW function, we prove that the sufficient conditions for the existence and stability of semi-trivial solution and positive periodic solution. Numerical simulations are carried out to illustrate the feasibility of our main results.  相似文献   

11.
Many of the existing predator–prey models on stage structured populations are some ordinary differential equations (ODE) or models without a disturbing effect of human behavior. In reality, death of the juvenile during its immature stage and catching or poisoning for the prey or predator occur continuously. From this basic standpoint, we formulate a general and robust prey-dependent consumption predator–prey model with periodic harvesting (catching or poisoning) for the prey and stage structure for the predator with constant maturation time delay (through-stage time delay) and perform a systematic mathematical and ecological study. We show that the conditions for global attractivity of the ‘predator-extinction’ (‘predator-eradication’) periodic solution and permanence of the population of the model depend on time delay, so, we call it “profitless”. We also show that constant maturation time delay and impulsive catching or poisoning for the prey can bring great effects on the dynamics of system by numerical analysis. In this paper, the main feature is that we introduce time delay and pulse into the predator–prey (natural enemy–pest) model with age structure, exhibit a new modeling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.  相似文献   

12.
A delayed predator-prey model concerning impulsive spraying pesticides and releasing natural enemies is proposed and investigated,in which both the prey and the predator have a history that takes them through two stages:immature and mature.The global attractiveness of the pest-eradication periodic solution is discussed,and sufficient condition is obtained for the permanence of the system.Further,numerical simulations show that there is a characteristic sequence of bifurcations leading to a chaotic dynamics,which implies that the system with constant periodic impulsive perturbations admits rich and complex dynamics.  相似文献   

13.
In this paper, we firstly consider a Lotka–Volterra predator–prey model with impulsive constant releasing for natural enemies and a proportion of killing or catching pests at fixed moments, and we have proved that there exists a pest-eradication periodic solution which is globally asymptotically stable. Further, we extend the model for the population to move in a two-patch environment. The effects of population dispersal and impulsive control tactics are investigated, i.e. we chiefly address the question of whether population dispersal is beneficial or detrimental for pest persistence. To do this, some special cases are theoretically investigated and numerical investigations are done for general case. The results indicate that for some ranges of dispersal rates, population dispersal is beneficial to pest control, but for other ranges, it is harmful. These clarify that we can get some new effective pest control strategies by controlling the dispersal rates of pests and natural enemies.  相似文献   

14.
In an ecosystem multiple prey species often share a common predator and the interactions between the preys are neutral. In view of these facts and based on a multiple species prey–predator system with Holling IV and II functional responses, an impulsive differential equation to model the process of periodically releasing natural enemies and spraying pesticides at different fixed times for pest control is proposed and investigated. It is proved that there exists a locally asymptotically stable pest-eradication periodic solution under the assumption that the impulsive period is less than some critical value (or the release amount of the predator is greater than another critical value). Permanence conditions are established when the impulsive period is greater than another critical value (or the release amount of the predator is less than some critical value). Numerical results show that the system we consider has more complex dynamics including period solution, quasi-periodic oscillation, chaos, intermittency and crises.  相似文献   

15.
In this paper, we investigate the pest control model with population dispersal in two patches and impulsive effect. By exploiting the Floquet theory of impulsive differential equation and small amplitude perturbation skills, we can obtain that the susceptible pest eradication periodic solution is globally asymptotically stable if the impulsive periodic τ is less than the critical value τ0 . Further, we also prove that the system is permanent when the impulsive periodic τ is larger than the critical value τ0. Hence, in order to drive the susceptible pest to extinction, we can take impulsive control strategy such that τ < τ0 according to the effect of the viruses on the environment and the cost of the releasing pest infected in a laboratory. Finally, numerical simulations validate the obtained theoretical results for the pest control model with population dispersal in two patches and impulsive effect.  相似文献   

16.
According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator–prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.  相似文献   

17.
We investigate leaky integrate-and-fire models (LIF models for short) driven by Stepanov and μ-almost periodic functions. Special attention is paid to the properties of the firing map and its displacement, which give information about the spiking behavior of the considered system. We provide conditions under which such maps are well-defined and are uniformly continuous. We show that the LIF models with Stepanov almost periodic inputs have uniformly almost periodic displacements. We also show that in the case of μ-almost periodic drives it may happen that the displacement map is uniformly continuous, but is not μ-almost periodic (and thus cannot be Stepanov or uniformly almost periodic). By allowing discontinuous inputs, we extend some previous results, showing, for example, that the firing rate for the LIF models with Stepanov almost periodic input exists and is unique. This is a starting point for the investigation of the dynamics of almost-periodically driven integrate-and-fire systems.  相似文献   

18.
This paper considers an epidemic model of a vector-borne disease which has direct mode of transmission in addition to the vector-mediated transmission. The incidence term is assumed to be of the bilinear mass-action form. We include both a baseline ODE version of the model, and, a differential-delay model with a discrete time delay. The ODE model shows that the dynamics is completely determined by the basic reproduction number R0. If R0?1, the disease-free equilibrium is globally stable and the disease dies out. If R0>1, a unique endemic equilibrium exists and is locally asymptotically stable in the interior of the feasible region. The delay in the differential-delay model accounts for the incubation time the vectors need to become infectious. We study the effect of that delay on the stability of the equilibria. We show that the introduction of a time delay in the host-to-vector transmission term can destabilize the system and periodic solutions can arise through Hopf bifurcation.  相似文献   

19.
In this paper, the dynamics of an impulsively controlled predator-prey model with modified Leslie-Gower and Holling type II schemes is analyzed. Choosing pest birth rate r 1 as control parameter, we show that there exists a globally asymptotically stable pest-eradication periodic solution when r 1 is less than some critical value $r_{1}^{*}$ and the system is permanent when r 1 is larger than the critical value $r_{1}^{*}.$ By use of standard techniques of bifurcation theory, we prove that this threshold there are periodic oscillations in pest and predator. Furthermore, some situations which leads to chaotic behavior of the system are investigated by means of numerical simulations.  相似文献   

20.
In this article we propose a stage-structured predator–prey model with disturbing pulse and time delays and obtain the sufficient conditions for the global attractivity of predator-eradiation periodic solution and permanence of the system. We also show that time delay, pulse catching rate and the period of pulsing can affect the dynamics of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号