首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
固定n(Ce)/n(Zr)比为0.67/0.33,用共沉淀法制得一系列CeO2-ZrO2-Al2O3固溶体.采用这些固溶体作载体,以Fe2O3为活性组分,用浸渍法制备了一系列催化剂.BET结果显示,将适量Ce0.67Zr0.33O2引入到Al2O3载体中有助于催化剂保持较高的比表面积.TPR结果显示,载体中引入适量的Ce0.67Zr0.33O2可以改善催化剂的氧化还原性能.XRD结果表明,Fe2O3在CeO2-ZrO2-Al2O3载体上呈现出良好的分散状况,老化前后催化剂的晶相结构基本无明显变化.特别是当载体中m(Ce0.67Zr0.33O2)∶m(Al2O3)的值为1∶2时,Fe2O3/CeO2-ZrO2-Al2O3催化剂在甲烷催化燃烧中显示出最佳的催化性能和抗高温老化性能.  相似文献   

2.
La0.8Sr0.2Ga0.8Mg0.2O2.8的电化学性质及其在SOFC中的应用   总被引:3,自引:0,他引:3  
采用凝胶浇注法制备具有较高氧离子电导率的固体电解质La0.8Sr0.2Ga0.8Mg0.2O2.8粉料.X射线衍射结果表明,于1400℃焙烧后即形成了钙钛矿结构,无杂相存在.探讨了粉料压制坯体的致密化和导电性能在1450℃下与烧结时间的关系,发现烧结时间为18h时其相对密度达98.3%,而在24h的情况下,样品具有最佳的氧离子导电性.采用Ni-Ce0.8Gd0.2O1.9作为阳极,La0.8Sr0.2Ga0.6Ni0.4O2.7作为阴极,组装了平板型固体氧化物燃料电池(SOFC).阳极和阴极分别通入含3%H2O的氢气和空气,750℃时的开路电压为1.04V,最大输出功率密度(P)达252mW/cm2(U=0.48V,J=525mA/cm2).  相似文献   

3.
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g~(-1),3C时放电容量仍然可保持在160.5 m Ah·g~(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。  相似文献   

4.
Ga2O3催化剂上CO2气氛中丙烷脱氢反应的研究   总被引:4,自引:0,他引:4  
考察了Ga2O3对于丙烷脱氢和CO2气氛脱氢反应的催化性能.结果表明,Ga2O3具有较高的催化活性,其性能优于传统的Cr2O3脱氢催化剂.催化反应可能经过了一个丙烷异裂的过程,其中CO2是通过逆水煤气反应和Boudouard反应来促进催化剂性能的,在高于823K时该促进作用更为明显.催化剂的催化活性和其表面酸密度密切相关,在Ga2O3结构中,四配位Ga3+是其酸位的来源,并通过质子与氧化物的共同作用促进反应进行.催化剂的失活是由于表面的积碳和活性氧的消耗共同造成的.同时还对Ga2O3作为丙烷脱氢反应的催化剂的催化反应机理进行了初步探讨.  相似文献   

5.
随着大气中CO2浓度的增加,温室效应日趋严重,促使人们对大气中CO2的转化与消除这一课题更加重视。1990年Yutaka Tamaura[1]发现氧缺位磁铁矿几乎可以100%分解CO2后,为解决温室效应提供了一条新的探索途径。通过对不同铁酸盐MFe2O4(M=Fe,Mn[2],Co[3],Zn[4],Ni[5]等)分解CO2活性的考察,发现铁酸镍在300℃分解CO2的活性比其它铁酸盐都好。NiFe2O4的制备最常采用的是共沉淀法、柠檬酸溶胶凝胶法和水热法,3种方法由于制备  相似文献   

6.
以氟化锂为氟源,通过高温固相法合成了F掺杂的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)和电化学测试等手段研究F影响LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2结构和性能的微观机制。结果表明:适量F掺杂可以提高正极材料的放电比容量,改善其倍率性、循环性和热稳定性。当F掺杂量(物质的量分数)为1.5%时,材料的综合电化学性能最优,初始放电比容量(0.2C)和50周循环容量保持率(1C)分别由原始的174.0 mAh·g~(-1)(78.7%)提高到178.6 mAh·g~(-1)(85.7%)。LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的改善可归因于F能够增强过渡金属层、锂层与氧层之间的结合力,提高材料的结构稳定性。此外,F掺杂还有利于降低电化学反应中的界面电阻和电荷转移阻抗。  相似文献   

7.
Mg(BO2)2在MgCl2水溶液中的相平衡与化学平衡   总被引:1,自引:0,他引:1  
借助拉曼光谱和X射线衍射(XRD)检测手段,对Mg(BO_2)_2在MgCl_2水溶液中水解的固液相平衡与物种化学平衡规律进行了研究。结果表明,MgCl_2对Mg(BO_2)_2的溶解转化、多硼氧配阴离子的物种分布有很大影响:(1)随着MgCl_2浓度从0达到饱和,Mg(BO_2)_2的表观饱和浓度从0.79%增加到1.96%,pH值从9.96降到6.27;(2)Mg(BO_2)_2在纯水中水解形成固相Mg_2B_6O_(11)·15H_2O和Mg(OH)_2,在MgCl_2溶液中形成固相Mg_2B_6O_(11)·15H_2O和Mg_3Cl_2(OH)_4·4H_2O;(3)Mg(BO_2)_2在纯水中水解,硼的物种主要为B_4O_5(OH)_4~(2-)和B_3O_3(OH)_4~-,分别占液相总硼含量的49.81%和19.54%。在MgCl_2饱和溶液中,主要为B_3O_3(OH)_4~-和B_5O_6OH)_4~-,分别占液相总硼含量的44.57%和40.00%。  相似文献   

8.
尖晶石LiMn2O4的改性研究   总被引:4,自引:0,他引:4  
由于资源丰富、价格便宜、易制备、对环境无污染、可回收利用等优点,尖晶石型LiMn2O4成为锂离子二次电池中最有希望的正极材料[1~3]。然而,在高电压充、放电条件下,由于电极中锰的溶解和Jahn鄄Teller效应的发生,会造成LiMn2O4容量迅速衰减[4~6]。为了改善LiMn2O4的电化学性能,研究者主要通过优化合成条件及合成方法来控制产品的粒径分布与形貌,以利于锂离子的脱、嵌[7,8];用掺杂的方法以稳定其结构,抑制Jahn鄄Teller效应的发生[9,10];用表面修饰的方式来减少活性物质与电解液的直接接触从而降低Mn的溶解[11,12]。掺杂方面,Co3 不仅有…  相似文献   

9.
溶胶-凝胶法制备Li3V2(PO4)3及其性能研究   总被引:6,自引:0,他引:6       下载免费PDF全文
0引言具有类NASICON结构的Li3V2(PO4)3是继过渡金属氧化物LMO后的一种新型的锂离子二次电池正极材料。与目前市场上应用最为广泛的正极材料LiCoO2相比,Li3V2(PO4)3具有超常的稳定性,即使在脱出的Li 与过渡金属原子的物质的量之比大于1的时候仍然具有超乎寻常的稳定性,而通常情况下1mol LiCoO2在脱出0.5mol Li 就会变得不稳定。并且Co是一种战略物资,全球储量十分有限;Co也是一种有毒金属,对于环境污染较为严重。LiNiO2因其合成较为困难而使应用受限,尖晶石LiMn2O4虽然属于环境友好型化合物,但其理论比容量仅为148mAh·g-1,且…  相似文献   

10.
为提高LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)材料的电化学性能,在NCA材料的制备过程中加入聚乙烯吡咯烷酮(PVP),通过调控所得NCA材料的形貌来提高其电化学性能。所得材料采用X射线衍射仪和扫描电子显微镜进行形貌结构表征,电化学性能经组装成纽扣电池,用电池程控测试仪和电化学工作站进行测试。研究结果表明:由于PVP的空间效应和静电作用,PVP改性的NCA材料拥有更完整的棒状结构、发育出更好的层状结构,电化学储能性能得到较大的提升。在0.1C下,材料的首次放电比容量和充放电效率分别从143.36 mAh·g~(-1)、78.25%提高到了170.24 mAh·g~(-1)、89.20%;在0.2C的实验室条件下循环50次后,容量保持率为94.28%。  相似文献   

11.
通过添加烷基季铵盐类表面活性剂来调控材料形貌和粒径的改性方法,在LiNi0.8Co0.1Mn0.1O2前驱体合成过程中添加表面活性剂十二烷基三甲基溴化铵(DTAB)和十六烷基三甲基溴化铵(CTAB),利用尿素作为配合剂和沉淀剂,采用溶剂热法合成LiNi0.8Co0.1Mn0.1O2前驱体。最后,高温混锂煅烧合成椭球形的空心多孔材料。相比于不添加表面活性剂的样本,改性的材料有着更小的粒径和更加规整的形貌。电化学测试表明,添加DTAB和CTAB之后,首次充电容量分别达到223与251 mAh·g-1(0.1C)。其中,添加CTAB的样品首次放电容量达到216 mAh·g-1(0.1C),100次循环后容量保持率为85.1%,高于LiNi0.8Co0.1Mn0.1O2的81.7%(0.1C)。表面活性剂的改性显著提高了材料的电化学性能,为高镍三元正极材料的改性提供了一种新的思路。  相似文献   

12.
通过共沉淀法制备锂离子电池富锂锰基正极材料Li1.2Mn0.534Ni0.133Co0.133O2,并对其进行AlF3包覆。实验结果表明,通过AlF3包覆,材料的电化学性能得到明显提高。在0.2C下,包覆前材料的首次放电比容量为253 mAh.g-1,首次充放电效率仅为88.8%。经过AlF3包覆,材料的首次放电比容量提高到294 mAh.g-1,首次充放电效率高达96.4%。同样,在1.0C下循环50次,未包覆材料的放电比容量由225 mAh.g-1降到185 mAh.g-1,容量保持率仅为82.2%。经过AlF3包覆,材料的放电比容量由230mAh.g-1仅降为222 mAh.g-1,容量保持率高达96.5%。  相似文献   

13.
许惠  钟辉 《无机化学学报》2006,22(10):1761-1765
研究了两种不同前驱体Ni(OH)2对LiCo0.3Ni0.7O2锂离子电池正极材料的结构与电化学性能的影响,并用XRD、SEM及电性能测试考察了材料的结构、形貌与电化学性能。结果表明,前驱体Ni(OH)2的形貌、结晶形态对LiCo0.3Ni0.7O2正极材料的性能有极大的影响。与目前镍酸锂合成需高密度球形镍前驱体Ni(OH)2认识不同,本文发现呈枝晶网络状结构、表面蓬松、比表面积高和振实密度低的前驱体Ni(OH)2具有较高的化学活性,可有效抑制产物LiCo0.3Ni0.7O2正极材料中阳离子混排产物的生成。由其制备的目标正极材料LiCo0.3Ni0.7O2显示出较优的电化学性能,首次放电容量为175 mAh·g-1,首次放电效率为93.9%,40次循环容量保持率为94.8%,显示较好的循环稳定性。  相似文献   

14.
通过原位反应法,利用富镍层状金属氧化物LiNi0.8Co0.1Mn0.1O2(LNCM811)正极材料表面残余的氢氧化锂和碳酸锂,与C8H20O4Ti和(NH4)H2PO4反应,在LNCM811表面原位生成快离子导体LiTi2(PO43(LTP)包覆层。这种原位反应的包覆方法有利于移除LNCM811表面有害的残留物氢氧化锂和碳酸锂。而且,获得的LTP均匀包覆层不仅可以有效地抑制LNCM811表面和电解液的直接接触及其副反应,还可以确保充放电循环过程中LNCM811正极材料的快速Li+传导。因此,在LTP包覆层的多重作用下,LTP包覆的LNCM811正极材料具有优异的循环稳定性和倍率性能:在0.2C时,首次放电比容量高达200.6 mAh·g-1,200圈后的可逆容量依然有155.7 mAh·g-1;在2C和5C的高电流密度下,200圈后的可逆容量仍然有126.4和111.9 mAh·g-1。  相似文献   

15.
以金属硫酸盐为原料,NaOH和NH3·H2O为沉淀剂,用共沉淀法合成了Co0.9Ni0.05Mn0.05(OH)前驱体,再进行配锂并通过高温固相法合成了Ni-Mn共掺杂高电压钴酸锂锂离子电池正极材料Li(Co0.9Ni0.05Mn0.05)O2。用X射线衍射(XRD)、扫描电镜(SEM)、 循环伏安(C-V)、交流阻抗(EIS)和充放电测试研究样品的晶体结构、形貌和电化学性能。结果表明Ni-Mn共掺杂正极材料Li(Co0.9Ni0.05Mn0.05)O2有优秀的电化学性能:在3.0~4.4 V和3.0~4.5 V区间,0.5C倍率下首次放电比容量分别为162 mAh·g-1和187 mAh·g-1,循环100次后容量保持率分别为94%和94%。  相似文献   

16.
Ni-Mn共掺杂高电压钴酸锂锂离子电池正极材料   总被引:1,自引:0,他引:1  
以金属硫酸盐为原料,Na OH和NH3·H2O为沉淀剂,用共沉淀法合成了Co0.9Ni0.05Mn0.05(OH)前驱体,再进行配锂并通过高温固相法合成了Ni-Mn共掺杂高电压钴酸锂锂离子电池正极材料Li(Co0.9Ni0.05Mn0.05)O2。用X射线衍射(XRD)、扫描电镜(SEM)、循环伏安(C-V)、交流阻抗(EIS)和充放电测试研究样品的晶体结构、形貌和电化学性能。结果表明Ni-Mn共掺杂正极材料Li(Co0.9Ni0.05Mn0.05)O2有优秀的电化学性能:在3.0~4.4 V和3.0~4.5 V区间,0.5C倍率下首次放电比容量分别为162.5 m Ah·g-1和185 m Ah·g-1,循环100次后容量保持率分别为94.4%和93.7%。  相似文献   

17.
利用十二烷基磺酸钠(SDS)作为表面活性剂,合成了形貌化的CoC2O4配合物前驱物,然后在500 ℃下热分解形貌化的前驱物,得到了多层多孔Co3O4纳米粒子组装体。采用FESEM、TEM、HRTEM、XRD、N2吸附脱附和Raman散射等手段对产物进行了分析和表征。低角XRD,TEM和N2吸附脱附测试表明所得组装体具有多孔结构。常规XRD、HRTEM和Raman结果证明组装体中Co3O4纳米粒子建筑块结晶较好。与体相Co3O4晶体相比,Co3O4纳米粒子组装体的5个拉曼活性峰发生了明显的红移。将Co3O4纳米粒子组装体作为锂离子电池的正极材料进行了电化学性能测试,结果表明该组装体电极的首次放电容量为1 115 mAh·g-1,远高于目前文献报道的Co3O4纳米管、纳米粒子和纳米棒电极。但是,该组装体电极的循环性能不好,有待进一步提高。  相似文献   

18.
锂离子电池正极材料LiMn2O4的低热固相合成与性能表征   总被引:6,自引:0,他引:6  
锂离子电池具有比能量高、环境污染小等优点,广泛应用于手提电话、便携式电脑、摄像机等设备中。其正极材料的研究是锂离子电池的研究重点。层状结构的LiCoO2、LiNiO2和尖晶石结构的LiMn2O4是仅有的三种能在3.5V以上电位可嵌入Li的正极材料[1~3]。目前市售的锂离子电池主要采用LiCoO2作正极材料,但由于Co资源缺乏和价格相对昂贵,而锰资源丰富,价格低廉且无毒,对环境友好,因此世界各国都在大力进行以LiMn2O4为正极材料的锂离子电池的实用化研究。LiMn2O4传统的制备方法是高温固相反应合成法[4~7],但由于Mn的变价多,与Li形成贫Li或…  相似文献   

19.
正交结构LixMnO2正极材料的合成及其电化学性能研究   总被引:3,自引:0,他引:3  
0引言随着社会的进步,人们对化学电源提出了高能量、长寿命、低成本、低环境污染的要求。1990年由日本Sony能源公司率先研制成功的锂离子电池可以部分满足上述要求,一经问世,便迅速在便携式电子设备、电动汽车等众多领域展示了广阔的应用前景,掀起了锂离子二次电池的研究热潮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号