首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   3篇
化学   5篇
晶体学   1篇
物理学   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2012年   1篇
  2011年   1篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 62 毫秒
1
1.
Single crystal of lithium terbium tungstate LiTb(WO4)2 has been grown by the flux method. The crystal structure was refined from single-crystal X-ray data. It crystallizes in tetragonal system, space group I41/a with a = 5.1749(9), c = 11.1953(19) ?, V = 299.81(12) ?~3, Z = 2, Mr = 661.56, Dc = 7.328 g/cm^3, F(000) = 560, μ(MoKα) = 49.94 mm-1, R(F^2 > 2σ(F^2)) = 0.026 and wR(F^2) = 0.070. It features a typical scheelite-type structure composed of two-direction packing of isolated WO4 tetrahedra. Li and Tb atoms in the structure occupy the same crystallographic site. Moreover, a series of solid solution phosphors LiTb(1-x)Eux(WO4)2(x = 0.004~0.1) were synthesized by high temperature solid-state reactions. The phosphors could be effectively excited by a wavelength range from 379 to 487 nm, which matches well with the UV and near-UV LED chip. The emission color of the phosphor can be tuned from green, through yellow to red by simply adjusting the relative Eu3+ and Tb3+ concentration due to the Tb3+ to Eu3+ energy transfer.  相似文献   
2.
采用感应熔炼技术在Ar气氛保护下制备得到LaMg2Ni与Mg2Ni合金。X射线衍射(XRD)图表明LaMg2Ni合金在吸氢过程中分解为LaH3相和Mg2NiH4相,放氢过程中LaH3相转化为La3H7相。与Mg2Ni合金相比,LaMg2Ni合金显示出优良的吸氢动力学性能,这是由于镧氢化合物的存在及其在吸氢过程中所发生的相转变所造成的。LaMg2Ni合金280 s内吸氢即可达到最大储氢量的90%以上,而Mg2Ni合金则需要1200 s才能达到,且在相同温度下LaMg2Ni合金的吸氢反应速率常数大于Mg2Ni合金速率常数。镧氢化合物不仅有利于改善动力学性能,而且可以提高热力学性能。LaMg2Ni合金中的Mg2Ni相氢化反应焓与熵分别为-53.02 kJ.mol-1和84.96 J.K-1.mol-1(H2),这一数值小于单相Mg2Ni氢化反应焓与熵(-64.50 kJ.mol-1,-123.10 J.K-1.mol-1(H2))。压力-组成-温度(P-C-T)测试结果表明在603 K至523 K温度范围内,LaMg2Ni合金储氢容量保持稳定为1.95wt%左右,然而Mg2Ni合金的储氢容量则由4.09wt%衰减为3.13wt%,Mg2Ni合金的储氢容量在523K低温下仅为603 K时的76.5%,表明镧氢化合物能够改善Mg2Ni合金低温下的吸放氢性能。  相似文献   
3.
以氟化锂为氟源,通过高温固相法合成了F掺杂的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)和电化学测试等手段研究F影响LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2结构和性能的微观机制。结果表明:适量F掺杂可以提高正极材料的放电比容量,改善其倍率性、循环性和热稳定性。当F掺杂量(物质的量分数)为1.5%时,材料的综合电化学性能最优,初始放电比容量(0.2C)和50周循环容量保持率(1C)分别由原始的174.0 mAh·g~(-1)(78.7%)提高到178.6 mAh·g~(-1)(85.7%)。LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的改善可归因于F能够增强过渡金属层、锂层与氧层之间的结合力,提高材料的结构稳定性。此外,F掺杂还有利于降低电化学反应中的界面电阻和电荷转移阻抗。  相似文献   
4.
通过浸渍-还原的方法合成Ti3C2/rGO/MF(三聚氰胺泡沫)复合材料(TGMF),然后将TGMF与PMMA-LiBH4结合,形成PMMA-LiBH4/TGMF(PL/TGMF)复合材料.系统地研究了PL/TGMF的储氢性能.实验表明,与PL/GMF相比,PL/TGMF具有更低的初始放氢温度,且在300~400℃具有较快的放氢速率,虽然PL/TGMF的接触角略有减小,但仍具有较好的疏水性.机理研究表明:低温下LiBH4与PMMA反应生成Li3BO3和LiB5O8,高温下(300~400℃)LiBH4与PMMA、Ti3C2相互作用生成Li2B8O13和TiB12、TiB.  相似文献   
5.
A series of Tb-doped solid solutions PbGd_(1-x)Tb_xB_7O_(13)(x = 0~1) were synthesized by high-temperature solid state reaction method. The luminescence properties were investigated under UV(274 nm) and near-UV(372 nm) excitation. The emission spectrum by 274 nm exciting reveals a charge-transfer between Gd~(3+) and Tb~(3+) ions. Under near-UV light(372 nm) excitation, PbGd_(1-x)Tb_xB_7O_(13):x Tb~(~(3+)) exhibits intense green emission centered at 543 nm due to the ~5D_4→~7F_5 transition of Tb~(3+) activator. The optimum doping concentrations were found to be x = 0.8 with the quantum efficiency of 35%. One may expect that PbGd_(1-x)Tb_xB_7O_(13) has the potential to be used as a green phosphor activated by near near-UV light.  相似文献   
6.
本文所述方法是将工业硫酸定量稀释,直接雾化进入ICP激发,测定其中砷和铁的光谱强度和含量。绘制校准曲线用标准溶液,加入与测定样品相同量的分析纯硫酸为基体。该方法快速、简便,合成标准样品分析结果与标称值吻合,进口工业硫酸样品中砷、铁含量测定结果与国外检验结果、国家标准方法检验结果基本吻合。  相似文献   
7.
利用真空感应熔炼和退火方法制备了LaMg8.40Ni2.34合金. 采用X射线衍射(XRD)分析、扫描电镜(SEM)和压力-组成-温度(PCT)测试仪测试了合金的相组成、微观形貌和储氢性能. LaMg8.40Ni2.34合金由La2Mg17、LaMg2Ni和Mg2Ni组成,且在第一次吸放氢循环中就可以完全活化. 在558 K下的可逆储氢量为3.01%(质量分数), 合金的PCT曲线表现出双吸氢平台, 分别对应着形成的MgH2和Mg2NiH4. 但是放氢曲线却只有一个平台出现, 这是由MgH2和Mg2NiH4之间的协同脱氢作用产生的. LaMg8.40Ni2.34合金在吸放氢时的活化能分别为(52.4±0.4)和(59.2±0.1) kJ·mol-1, 均低于Mg2Ni合金. 与纯Mg和Mg2Ni合金相比, LaMg8.40Ni2.34合金具有良好的活化性能、较高的储氢性能和优良的动力学性能.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号