首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
Two types of small iron clusters supported onγ-Al2O3-RT(dehydroxylated at room temperature) andγ-Al2O3-800 (dehydroxylated at 800℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated intoγ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mossbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups ofγ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups ofγ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreducedα-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reducedα-Fe2O3.  相似文献   

2.
Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to d  相似文献   

3.
A series of 3. OMo/(Hβ γ-Al2O3) samples with γ-Al2O3 contents in the range of 0-100% (mass fraction) was studied by means of XRD, NH3-TPD, TPR and BET determinations for characterizing their structures. The Hβ zeolite structure in the 3.0Mo/Hβ sample can be effectively stabilized by adding some γ-Al2O3 to Hβ zeolite. γ-Al2O3 mainly favors the formation of polymolybdate or multilayered Mo oxide, while Hβ mainly forms the Al2(MoO4)3 species, as evaluated by the TPR technique. When used as the catalyst for the metathesis of butylene-2 and ethylene to propylene, there exists a close correlation between the specific surface area and stability of the catalyst. The specific surface area of the catalyst shows the maximum when (Hβ γ-Al2O3) contains 30%γ-Al2O3, which is in agreement with that of the time needed for the reaction stablization. In the case of maximum surface area, the rate of coke deposition is the minimum.  相似文献   

4.
A series of 3. 0Mo/(Hβ γ-Al2O3) samples with γ-Al2O3 contents in the range of 0-100% (mass fraction) was studied by means of XRD, NH3-TPD, TPR and BET determinations for characterizing their structures. The Hβ zeolite structure in the 3. 0Mo/Hβ sample can be effectively stabilized by adding some γ-Al2O3to Hβ zeolite. γ-Al2O3 mainly favors the formation of polymolybdate or multilayered Mo oxide, while Hβmainly forms the Al2(MoO4)3 species, as evaluated by the TPR technique. When used as the catalyst for the metathesis of butylene-2 and ethylene to propylene, there exists a close correlation between the specific surface area and stability of the catalyst. The specific surface area of the catalyst shows the maximum when (Hβ γ-Al2O3) contains 30%γ-Al2O3, which is in agreement with that of the time needed for the reaction stablization. In the case of maximum surface area, the rate of coke deposition is the minimum.  相似文献   

5.
V2O5/γ-Al2O3-TiO2 catalysts were prepared by the mixing sol-gel and co-impregnation method. The performance of the catalysts for complete oxidation of ethanol was performed in a conventional fixed-bed quartz reactor. And the effects of support, preparation methods and vanadium content have been investigated. The results showed that 5% V2O5 catalyst supported on γ-Al2O3-TiO2 possessed the best ethanol conversion under the considered temperature. This may be ascribed to the highly dispersible active component, mutual function between the active component and the carriers. The nature of the best performance for 5%V/γ-Al2O3-TiO2 catalyst may be related to the high V4+ amounts on the surface. And the surface V4+ species may play an important role in the formation of active site for the total ethanol oxidation.  相似文献   

6.
An extensive study of Fischer-Tropsch (FT) synthesis on cobalt nano particles supported on γ-alumina and carbon nanotubes (CNTs) catalysts is reported.20 wt% of cobalt is loaded on the supports by impregnation method.The deactivation of the two catalysts was studied at 220 C,2 MPa and 2.7 L/h feed flow rate using a fixed bed micro-reactor.The calcined fresh and used catalysts were characterized extensively and different sources of catalyst deactivation were identified.Formation of cobalt-support mixed oxides in the form of xCoO yAl2O3 and cobalt aluminates formation were the main sources of the Co/γ-Al2O3 catalyst deactivation.However sintering and cluster growth of cobalt nano particles are the main sources of the Co/CNTs catalyst deactivation.In the case of the Co/γ-Al2O3 catalyst,after 720 h on stream of continuous FT synthesis the average cobalt nano particles diameter increased from 15.9 to 18.4 nm,whereas,under the same reaction conditions the average cobalt nano particles diameter of the Co/CNTs increased from 11.2 to 17.8 nm.Although,the initial FT activity of the Co/CNTs was 26% higher than that of the Co/γ-Al2O3,the FT activity over the Co/CNTs after 720 h on stream decreased by 49% and that over the Co/γ-Al2O3 by 32%.For the Co/γ-Al2O3 catalyst 6.7% of total activity loss and for the Co/CNTs catalyst 11.6% of total activity loss cannot be recovered after regeneration of the catalyst at the same conditions of the first regeneration step.It is concluded that using CNTs as cobalt catalyst support is beneficial in carbon utilization as compared to γ-Al2O3 support,but the Co/CNTs catalyst is more susceptible for deactivation.  相似文献   

7.
Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over CoMo catalyst have been studied. XRD results indicated that the main active phases in CNT and γ-Al2O3 supported Co-Mo catalysts are MoO2 and MoO3, respectively. The TPR results reveal that the reduction peak temperatures of the active species on CNT supported Co-Mo catalyst is lower than those on alumina supported Co-Mo catalyst, indicating that the CNT supports favor the r...  相似文献   

8.
Dehydrogenation of ethane to ethylene in CO2 was investigated over CeO2/γ-Al2O3 catalysts at 700℃ in a conventional flow reactor operating at atmospheric pressure. XRD, BET and microcalorimetric adsorption techniques were used to characterize the structure and surface acidity/basicity of the CeO2/γ-Al2O3 catalysts. The results show that the surface acidity decreased while the surface basicity increased after the addition of CeO2 to γ-Al2O3. Accordingly, the activity of the hydrogenation reaction of CO2 increased, which might be responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highest ethane conversion obtained was about 15% for the 25?O2/γ-Al2O3. The selectivity to ethylene was high for all the CeO2, γ-Al2O3 and CeO2/γ-Al2O3 catalysts.  相似文献   

9.
Dehydrogenation of ethane to ethylene in CO2 was investigated over CeO2/γ-Al2O3 catalysts at 700 ℃ in a conventional flow reactor operating at atmospheric pressure. XRD, BET and microcalorimetric adsorption techniques were used to characterize the structure and surface acidity/basicity of the CeO2/γ-Al2O3 catalysts. The results show that the surface acidity decreased while the surface basicity increased after the addition of CeO2 to γ-Al2O3. Accordingly, the activity of the hydrogenation reaction of CO2 increased, which might be responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highest ethane conversion obtained was about 15% for the 25%CeO2/γ-Al2O3. The selectivity to ethylene was high for all the CeO2, γ-Al2O3 and CeO2/γ-Al2O3 catalysts.  相似文献   

10.
The selective catalytic oxidation of toluene with hydrogen peroxide over V-Mo-based catalysts under mild conditions was studied.The promotion effect of Mo on the catalysts was studied with V/Al2O3 and Mo/Al2O3 as reference samples.The catalysts were characterized by XRD,TPR,and XPS techniques.The results show that the addition of Mo to V/Al2O3 may change the distribution of V species on Al2O3 surface.Over V-Mo/Al2O3 catalyst,highly dispersed amorphous V species facilitates benzaldehyde formation,and crystalline V2O5 species increases the conversion of toluene but decreases the selectivity to benzaldehyde,while AlVMoO7 species favors both the conversion of toluene and the formation of cresols.The yield of benzaldehyde depends remarkably on the surface O/Al and Mo/V atomic ratios,and gets to a maximum value of 13.2% with a selectivity of 79.5% at an O/Al atomic ratio of 3.0 and Mo/V atomic ratio of 0.7.  相似文献   

11.
Adsorption properties of dibenzothiophene (DBT) on a CNT (carbon nanotube) support as well as on CoMoS/CNT and CoMoO/CNT catalysts have been studied. Consecutive desorption of adsorbates was measured by TGA. The commonly used carriers AC (activated carbon), γ-Al2O3, and their supported catalysts (CoMoO/AC, CoMoS/AC, CoMoO/γ-Al2O3, CoMoS/γ-Al2O3) were also subjected to analysis for comparison. The acidic properties of the samples were characterized using the NH3-TPD technique.Correlation between the adsorption of DBT and the acidic properties of the catalysts has been established.It was found that the Co-Mo catalysts in the sulfide state adsorbed much more DBT molecules than the corresponding Co-Mo catalysts in the oxide state. The CoMoS/CNT catalyst exhibited very high HDS activity and selectivity, as compared with the CoMoS/γ-Al2O3 catalysts. Based on the BET data and the high hydrogenolysis/hydrogenation selectivity of the CoMoS/CNT, it was deduced that more than 90% of the DBT molecules adsorbed on the CoMoS/CNT with an end-on mode, and the surface of the CoMoS/CNT catalyst was almost fully covered with DBT molecules. Although the AC support had very high surface area and high loading ability, the AC supported CoMoS catalyst showed lower HDS activity,as compared with the CoMoS/γ-Al2O3 catalyst.  相似文献   

12.
Dehydrogenation of ethane to ethylene in CO2 was investigated over CeO2/γ-Al2O3 catalysts at 700℃ in a conventional flow reactor operating at atmospheric pressure. XRD, BET and microcalori-metric adsorption techniques were used to characterize the structure and surface acidity/basicity of the CeO2/γ-Al2O3 catalysts. The results show that the surface acidity decreased while the surface basicity increased after the addition of CeO2 to γ-A12O3. Accordingly, the activity of the hydrogenation reaction of CO2 increased, which might be responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highest ethane conversion obtained was about 15% for the 25%CeO2/γ-Al2O3. The selectivity to ethylene was high for all the CeO2,γ-A12O3 and CeO2/γ-Al2O3 catalysts.  相似文献   

13.
The synthesis of carbon nanotubes (CNTs) via chemical vapour deposition of methane on NiO/γ-Al2O3 catalyst has been investigated.The reduction behavior of NiO/γ-Al2O3 by methane was studied using thermogravimetric (TG) and X-ray diffraction (XRD) techniques.It was found that the NiO supported on γ-Al2O3,was reduced to Ni0 in methane atmosphere in the temperature range of 710-770℃.The catalytic activity of NiO/γ-Al2O3 for CNTs synthesis by in situ chemical vapour deposition of methane during the reduction was also investigated.Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the CNTs produced at various reduction temperatures.The results indicated that the reduction temperature exhibits obvious influence on the morphology and the yield of CNTs.CNTs with the diameter of about 20 nm were obtained at reduction temperature of 750℃,and higher reduction temperature (such as 800 and 850℃) led to an increase in CNTs diameter and a decrease in CNTs yield.  相似文献   

14.
The effects of composite supports of CeO2-Al2O3,MgO-Al2O3,TiO2-Al2O3 or ZrO2-Al2O3 on the methanation activity of supported Co-Mo-based sulphur-resistant catalysts were investigated.The catalysts were further characterized by nitrogen adsorption measurement,X-ray diffraction and X-ray photoelectron spectroscopy.The catalyst of 5%CoO-15%MoO3 supported on CeO2-Al2O3,MgO-Al2O3,TiO2-Al2O3 or ZrO2-Al2O3 composite oxides,respectively,showed different catalytic performances of syngas methanation in the presence of hydrogen sulphide as compared with that of the 5%CoO-15%MoO3/Al2O3 catalyst.The Co-Mo/CeO2-Al2O3 catalyst shows the highest methanation activity among the tested catalysts.The enhanced methanation activity may be attributed to the improvement of the dispersion of active metal species and the inhibition of the formation of S6+.  相似文献   

15.
张志明 《高分子科学》2013,31(3):503-513
In this paper, electromagnetic poly(3,4-ethylenedioxythiophene)/γ-Fe2O3 (PEDOT/γ-Fe2O3 ) micro-bowls, 1 2 μm in diameter, were prepared by a simple environment-friendly process. In this method, the aqueous solution of cetyltrimethylammonium bromide (CTAB) instead of any organic solvent was used. FeCl3 acted as a source of Fe Ⅲ for the formation of γ-Fe2O3 and as an oxidant for the polymerization of 3,4-ethylenedioxythiophene (EDOT). The bowl-shaped morphology of PEDOT/γ-Fe2O3 composites was strongly influenced by the concentration of CTAB, FeCl2 , ammonia solution and the reaction temperature. The saturation magnetization of PEDOT/γ-Fe2O3 micro-bowls increased with the increase of FeCl2 concentration and reached 6.20 Am2 /kg at the FeCl2 concentration of 0.30 mol/L. The conductivity of the PEDOT/γ-Fe2O3 composites was in the range of 101 S/cm. The electrical and magnetic sources of PEDOT/γ-Fe2O3 micro-bowls were confirmed by SEM-EDX, TEM, XRD and XPS spectra. And the possible formation mechanism of PEDOT//γ-Fe2O3 was proposed.  相似文献   

16.
The Ni2P promoted and γ-Al2O3 supported NiMoW sulfide catalyst consisting of 4 wt% Mo, 22 wt% W, 2 wt% Ni and 2.5 wt% Ni2P was synthesized by a co-impregnation method. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, NH3 temperature-programmed desorption (NH3-TPD) and transmission electron microscopy (TEM). The results showed that Ni2P, Ni, Mo and W species were highly dispersed over γ-Al2O3. The hydrodesulfurization (HDS) of dibenzothiophene (DBT) showed that the presence of Ni2P brought a strong promotional effect on the HDS activity, which was further confirmed by the HDS and hydrodenitrogenation (HDN) of diesel oil under industrial conditions. The enhancement in HDN activity and stability by Ni2P addition could be attributed more to the effect of new active sites of Ni2P than that of acidity modification. The as-prepared Ni2P-NiMoW/γ-Al2O3 catalyst showed better hydrotreating performance than NiMoW/γ-Al2O3 and commercial catalysts.  相似文献   

17.
A new hierarchical composite consisted of multi-walled carbon nanotubes (CNTs) layer anchored on macroscopic α-Al2O3 host matrix was synthesized and used as support for Fischer-Tropsch synthesis (FTS). The composite constituted by a thin shell of a homogeneous, highly entangled and structure-opened carbon nanotubes network and it exhibited a relatively high and fully accessible specific surface area of 76 m 2 g-1 , compared with that of 5 m 2 g-1 of the original α-Al2O3 support. The metal-support interaction between carbon nanotubes surface and cobalt precursor and high effective surface area led to a relatively high dispersion of cobalt nanoparticles. This hierarchically supported cobalt catalyst exhibited a high FTS activity along with an extremely high selectivity towards liquid hydrocarbons compared with the cobalt-based catalyst supported on pristine α-Al2O3 or on CNTs carriers. This improvement can attribute to the high accessibility of composite surface area comparing with the macroscopic host structure alone or to the bulk CNTs where the nanoscopic dimension induced a dense packing with low mass transfer which favoured the problem of reactants competitive diffusion towards the cobalt active site. In addition, intrinsic thermal conductivity of decorated CNTs could help the heat dissipating throughout the catalyst body, thus avoiding the formation of local hot spots which appeared in high CO conversion under pure syngas feed in FTS reaction. Cobalt supported on CNTs decorated α-Al2O3 catalyst also exhibited satisfied high stability during more than 200 h on stream under relatively severe conditions compared with other catalysts reported in the literature. Finally, the macroscopic shape of such composite easily rendered its usage as catalyst support in a fixed-bed configuration without facing problems of transport and pressure drop as encountered with the bulk CNTs.  相似文献   

18.
A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.  相似文献   

19.
It has been found that the catalytic activity toward the decomposition of ethanol in a fix bed reactor can be greatly improved by loading Pt on the surface of CexZr1-xO2. In this study, we have investigated the effects of different x of Pt/γ-Al2O3/CexZr1-xO2 on the catalytic activity of catalysts. The prepared catalysts were characterized by BET, XRD, and TPR. The BET surface areas of the catalysts decreased with x decreasing. XRD results reveal that deposited Pt dispersed on the CexZr1-xO2 and γ-Al2O3 matrix. The order of catalytic activities is Pt/y-Al2O3/Ce0.5Zr0.5O2>Pt/γ-Al2O3/Ce0.25Zr0.75O2>Pt/γ-Al2O2/Ce0.75Zr0.25O2>Pt/y-Al2O3/CeO2>Pt/γ-Al2O3/ZrO2. Among the catalysts, the reduction peak area of Pt/γ-Al2O3/Ce0.5Zr0.5O2 is the largest and the oxygen mobility is noticeably pro-moted, which is in good harmony with the catalytic activity. Incorporation of ZrO2 into the CeO2 lattice considerably decreases the destruction temperature for ethanol. Based on these observations, the mechanistic role of oxygen mo-bility in the oxidation reaction has been suggested.  相似文献   

20.
Cobalt supported on carbon nanotubes(CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis(FTS).Problems associated with shaping of Co/CNTs into extrudates or pellets as well as catalyst attrition rendered these materials unfavorable for industrial applications.In this investigation regularγ-and nano-structured(N-S)alumina as well as CNTs-covered regularγ-and N-S-alumina supports were impregnated by cobalt nitrate solution to make new cobalt-based catalysts which were also promoted by Ru.The catalysts were characterized and tested in a micro reactor to evaluate their applicability in FTS.γ-Al2O3 was prepared by calcination of bohemite and N-S-Al2O3 was prepared by sol-gel method using aluminum chloride as starting material.Catalyst evaluations indicated that N-S-Al2O3 was superior to regularγ-Al2O3 and that CNTs-covered alumina supports were favored over non-covered ones in terms of activity and heavy hydrocarbon selectivity.These were justified by porosimetric characteristics of the catalysts and existence of CNTs points of view. CNTs-covered catalysts also showed higher wax selectivity and better resistance to deactivation.Furthermore,TPR analysis indicated that the cobalt aluminate phase,which is responsible for the permanent deactivation of alumina supported Co-based catalysts,did not form on alumina supported Co-based catalysts covered with CNTs due to weaker interactions between cobalt and alumina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号