首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  国内免费   2篇
化学   44篇
数学   4篇
物理学   12篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   11篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
An efficient method for the synthesis of 2-amino-3-cyano-4-aryl-5,10-dioxo-5,10-dihydro-4H- ben-zo[g]chromenes and hydroxy-substituted naphthalene-1,4-dione derivatives, using silica-bonded propylpiperazine-N-sulfamic acid as a solid acid, green, heterogeneous catalyst, under ambient and solvent-free conditions, is described. A simple procedure, high yields, short reaction time, safety, and reusability of the catalyst are advantages of these protocols.  相似文献   
2.
3.
An environmentally friendly procedure for the preparation of dihydropyrimidinone derivatives or their sulfur analogues under thermal solvent-free conditions in the presence of aluminium hydrogen sulfate [Al(HSO4)3] and alumina sulfuric acid (Al2O3-SO3H) as heterogeneous catalysts was developed.  相似文献   
4.
A magnetic solid phase extraction method based on agarose coated magnetic nanoparticles)ACMNPs(coupled to a new magnetic field agitation (MFA) device was developed and investigated for the separation, preconcentration and determination of Pd(II) in aqueous solutions. For the first time, the formation of the nanoparticles and their encapsulation in agarose micro-flakes was conducted in a single step. For this purpose, preparation of the magnetic iron oxide nanoparticles was performed in an alkaline agarose solution. The sizes of Fe3O4 nanoparticles and agarose micro-flakes were 10–14 nm and 90–130 μm, respectively. The nanomagnetic agarose particles were functionalized by iminodiacetic acid and subjected to magnetic field agitation in the MFA device. The influence of different analytical parameters such as pH, ionic strength, type and volume of desorption solvent and amount of the adsorbent on the preconcentration of Pd(II) were investigated. Eight replicated analysis at the optimized conditions, resulted in a recovery of 94.1% with an RSD of 5.2% for Pd(II). The detection limit of the method (3σ) was 47 ng L−1 for the analyte. The method was successfully applied to the determination of Pd(II) in natural water samples.  相似文献   
5.
Ehsan Zaman  Payman Jalali 《Physica A》2010,389(2):205-214
Hydraulic permeability is studied in porous media consisting of randomly distributed monodisperse spheres by means of computational fluid dynamics (CFD) simulations. The packing of spheres is generated by inserting a certain number of nonoverlapping spherical particles inside a cubic box at both low and high packing fractions using proper algorithms. Fluid flow simulations are performed within the interparticulate porous space by solving Navier-Stokes equations in a low-Reynolds laminar flow regime. The hydraulic permeability is calculated from the Darcy equation once the mean values of velocity and pressure gradient are calculated across the particle packing. The simulation results for the pressure drop across the packing are verified by the Ergun equation for the lower range of porosities (<0.75), and the Stokes equation for higher porosities (∼1). Using the results of simulations, the effects of porosity and particle diameters on the hydraulic permeability are investigated. Simulations precisely specified the range of applicability of empirical or semi-empirical correlations for hydraulic permeability, namely the Carman-Kozeny, Rumpf-Gupte, and Howells-Hinch formulas. The number of spheres in the model is gradually decreased from 2000 to 20 to discover the finite-size effect of pores on the hydraulic permeability of spherical packing, which has not been clearly addressed in the literature. In addition, the scale dependence of hydraulic permeability is studied via simulations of the packing of spheres shrunk to lower scales. The results of this work not only reveal the validity range of the aforementioned correlations, but also show the finite-size effect of pores and the scale-independence of direct CFD simulations for hydraulic permeability.  相似文献   
6.
A method for one-step synthesis of ultrafine agarose-coated superparamagnetic iron oxide nanoparticles (AC-SPIONs) was developed. The method is facile and fast and requires no organic solvent or surfactant. The average particle size of the prepared AC-SPIONs was only 20–40 nm with a narrow size distribution and with large saturation magnetization at room temperature. The obtained ultrafine nanogel particles were characterized by scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, transmission electron microscopy and vibrating sample magnetometer techniques. The AC-SPIONs were epoxy-activated by epichlorohydrin and aminated by ammonium hydroxide. The amination of the particles was investigated by the Kaiser test. The adsorption of two model compounds (gallic acid and ellagic acid) on the functionalized nanoparticles and their releases from them were investigated spectrophotometrically in three different pH values under biological conditions. The functionalized AC-SPIONs displayed good adsorption and in vitro drug release in a phosphate-buffered saline (pH 7.4). The ultrafine AC-SPIONs can be potentially used in magnetic solid-phase extraction, drug delivery, protein purification and enzyme immobilization methods.  相似文献   
7.
Hard-disk simulations are used for two-dimensional rapid granular shear flows of circular disks between two rotating cylinders. The intermittency effects associated with the rate of the energy dissipation of collisions are studied. The statistics of intermittent signals of energy dissipation reveals that a power law governs the dynamics of rapid shear granular flows. A dynamical system approach based on the Gledzer-Ohkitani-Yamada shell model of turbulence is employed to reproduce signals for energy dissipation that are statistically consistent with those from simulations. The results suggest that rapid granular flows can be analyzed by appropriate turbulent models.  相似文献   
8.
A reversed-phase dispersive liquid-liquid microextraction (RP-DLLME) method was developed for the preconcentration and direct HPLC determination of oleuropein in olive's processing wastewater (OPW) and olive leaves extracts. In conventional DLLME, the sedimented phase is a micro-drop of a chlorinated organic solvent that is not compatible with RP-HPLC. Therefore, solvent evaporation and reconstitution with an appropriate solvent is often required. In RP-DLLME, this problem was overcome by overturning the solvent polarity in the ordinary DLLME and replacing the organic solvent with water. A central composite chemometrics design was used for multivariate optimization of the effects of five different parameters influencing the extraction efficiency of the method. In the optimized conditions, a mixture of 1.4 mL of an ethyl acetate extract of sample and 40 μL water (pH 5.0) was rapidly injected into 5.3 mL of cyclohexane. After centrifugation of the formed cloudy mixture, a micro-drop of the aqueous phase was sedimented at the conical bottom of the centrifuge tube. This phase, that contained the preconcentrated and partially purified analyte, was directly injected into an RP-HPLC column for analysis. A mean extraction recovery of 102.5 (±4.5) % with enrichment factors exceeding 38, was obtained for five replicated analysis. The detection limit of the method (3σ) for OE was 0.02 μg L−1 for OPW and 2 × 10−3 mg kg−1 for olive leaves samples. The results showed that, RP-DLLME is a promising technique which is quick, easily operated and can be directly coupled to HPLC.  相似文献   
9.
10.
When dispersed in aqueous solution, droplets of bitumen (extra heavy oil) are known to acquire negative surface charges. The resulting electrostatic repulsion, according to traditional DLVO theory, is far too strong for any droplet coalescence to occur. However, from experience it is known that bitumen droplets do coalesce in aqueous suspensions. Furthermore, the process appears to be random, with the probability of coalescence increasing sharply with the drop size. To explain these facts, we modeled the bitumen-water interface as a heterogeneous surface comprising charged "patches"; the zeta potentials of the patches constitute a random variable that is assumed to be Gaussian. The traditional DLVO theory, according to this model, remains sound on the local scale (i.e., for patches interacting across an intervening water layer). Such a theory can predict the probabilities of coalescence in remarkable detail. A parameter central to this theory is the lateral extent of the charged patches, which was estimated to be in the neighborhood of 0.6 μm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号