首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
Broadband normal dispersion pumping supercontinuum (SC) generation in silica photonic crystal fiber (PCF) is investigated in this paper. A 1064-nm picosecond fiber laser is used to pump silica PCF for the SC generation. The length of PCF is optimized for the most efficient stimulated Raman scattering process in the picosecond pump pulse region. The first stimulated Raman Stokes peak is located in the anomalous dispersion regime of the PCF and near the zero dispersion wavelength; thus the SC generation process can benefit from both a normal dispersion pumping scheme and an anomalous dispersion pumping scheme. The 51.7-W SC spanning from about 700 nm to beyond 1700 nm is generated with an all-fiber configuration, and the pump-to-SC conversion efficiency is up to 90%. In order to avoid the output fiber end face damage and increase the stability of the system, an improved output solution for the high power SC is proposed in our experiment. This high-efficiency near-infrared SC source is very suitable for applications in which average output power and spectral power density are firstly desirable.  相似文献   

2.
We investigate the effect of the polarization state of the input pulses on the visible emissions in the anomalous dispersion region of polarization-maintaining photonic crystal fiber (PM-PCF), by using ~100 fs pump pulses whose central wavelength (1064 nm) is close to the second zero dispersion wavelength (1100 nm) of the fiber, where the soliton fission mechanisms play an important role. The experimental results show that the phase-matching two-color dispersive wave emission, one at 582 nm and the other at 600 nm, is polarization-dependent and frequency shift results from the different dispersion characteristics along the two orthogonal principal axes of PM-PCF. Furthermore, it is observed for the first time that the variation of the linear input polarization angles in 45° region almost has no influence on the output spectral profiles, and the break variation of the output spectrum exists when the angle between the polarization of the linear incident pulse and the fast-axis or the slow-axis of PM-PCF is 45°, which are attributed to the coupling between the two polarization modes in high birefringent PM-PCF.  相似文献   

3.
色散位移光纤反常色散区平坦超宽超连续谱的产生   总被引:1,自引:0,他引:1  
采用一种在色散位移光纤反常色散区产生平坦超宽超连续谱的方法。利用数值计算对色散位移光纤反常色散区高阶孤子压缩效应产生超连续谱展开了全面、深入的研究。结果表明,在色散位移光纤的反常色散区色散斜率(三阶色散)对超连续谱的形成起着决定性的作用;进一步研究表明,抽运脉冲的峰值功率及脉宽对超连续谱的谱宽和平坦度都有着重要影响,而高阶非线性效应对超连续谱产生没有显著影响。综合考虑以上因素,超续谱的谱宽和平坦度可以获得最大的优化。  相似文献   

4.
We demonstrate the supercontinuum (SC) generation in a four-hole As2S5 chalcogenide microstructured optical fiber (MOF) experimentally. The As2S5 glass has better property of transmission than As2S3 glass in the visible range. The four-hole As2S5 MOF is fabricated by a rod-in-tube method. The SCs generated by different pump wavelengths at 2,000, 2,300 and 2,500 nm in the MOF whose length is from 2.3 to 20 cm are demonstrated. Those pump wavelengths correspond to the chromatic dispersion wavelength in the normal chromatic dispersion region, the anomalous chromatic dispersion region close to zero-dispersion wavelength (ZDW) and the anomalous chromatic dispersion region far from ZDW, respectively. Wider SCs can be obtained when pumped at a wavelength in the anomalous dispersion region close to ZDW. The widest SC range of 4,280 nm (from 1,370 to 5,650 nm) covering two octaves was obtained in a 4.8-cm-long fiber pumped at 2,300 nm.  相似文献   

5.
设计了一种10m掺铥光纤级联于3m大模场光子晶体光纤末端的结构,利用400fs、1 550nm脉冲光产生孤子自频移,在入射光功率相同的情况下,掺铥光纤末端的孤子频移量比大模场光纤末端多100~150nm,平均多30%左右.孤子与泵浦光在掺铥光纤末端的输出光谱表明,残留泵浦光作用于Tm3+,在1.8~2.1μm范围产生受激辐射,从而增强了拉曼效应,导致孤子自频移增强.实验结果揭示了一种增强孤子自频移效应的方法,对于了解孤子在光纤中频移特性和提高基于孤子自频移的可调谐光源的调谐范围等具有参考意义.  相似文献   

6.
By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti:sapphire laser into the fundamental mode of photonic crystal fibre(PCF) with central holes fabricated through extracting air from the central hole,the broad and ultra-flattened supercontinuum(SC) in the visible wavelengths is generated.When the fundamental mode experiences an anomalous dispersion regime,three phases in the SC generation process are primarily presented.The SC generation(SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings.The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071,respectively.  相似文献   

7.
凹形色散分布光纤中超连续谱特性分析   总被引:5,自引:0,他引:5  
比较了在不同色散分布的色散渐减光纤中超连续(SC)谱的产生。结果表明,当光纤的色散值关于中心波长对称、且随着传输距离增加,经由反常色散区过渡到正常色散区的、凹形色散分布的色散渐减光纤更有利于产生平坦、带宽的超连续谱。从频域的全场方程出发,模拟了脉冲在光纤中的传输情形,发现脉冲在凹形色散分布的光纤中传输时,不仅在反常色散区能更大程度被压缩,在正常色散区由于存在零色散波长点,还能更进一步展宽,从而得到更宽、更平坦的超连续谱。在谱强为-27dB时,谱宽可达到298nm,比相同情况下的凸形色散的光纤中超连续谱增宽97nm。结果显示,凹形色散分布的光纤比凸形色散分布的光纤在超连续谱的产生上有更明显的优势,可以得到更宽的超连续谱。  相似文献   

8.
朱方玺  郑义 《发光学报》2014,35(4):496-500
在光纤纤芯中掺入适量GeO2有利于增加纤芯非线性折射率,提高光纤的非线性系数。利用有限元法设计了一种带宽为1.45 μm的宽反常色散掺杂光子晶体光纤,其光纤可以利用低泵浦功率产生任意波长的光孤子。分析结果显示,当脉冲脉宽TFWHM取300 fs时,产生基阶光孤子需要的最高平均泵浦功率为0.001 695 W,而产生五阶光孤子需要的最高平均泵浦功率仅0.042 38 W。  相似文献   

9.
We have investigated both experimentally and numerically the characteristics of wavelength tunable femtosecond soliton pulse generation using a pulse width variable fiber laser and two different types of polarization maintaining fibers. The generated soliton shows the feature of the pulsewidth becoming almost constant at - 250 fs under any conditions of the pump pulse for 220m fiber. High conversion efficiency from pump pulse to a generated soliton pulse accounting for as much as 73% can be obtained. This efficiency decreases with increase in the input power or wavelength shift. A superior conversion efficiency and broad wavelength shift can be obtained by using a more shortened pump pulse. In the numerical calculations, it is predicted that under a condition of constant power of pump pulse, the maximum wavelength shift is achieved when the soliton number N is -1.4. The difference of mode field diameter and the group velocity dispersion (GVD) coefficient β2 affect the wavelength shift and conversion efficiency. Using the fiber with small mode field diameter and small absolute value of GVD coefficient β2, a high conversion efficiency and large wavelength shift can be obtained.  相似文献   

10.
Polarization modulation instability (PMI) in birefringent photonic crystal fibers has been observed in the normal dispersion regime with a frequency shift of 64 THz between the generated frequencies and the pump frequency. The generated sidebands are orthogonally polarized to the pump. From the observed PMI frequency shift and the measured dispersion, we determined the phase birefringence to be 5.3 x 10(-5) at a pump wavelength of 647.1 nm. This birefringence was used to estimate the PMI gain as a function of pump wavelength. Four-wave mixing experiments in both the normal and the anomalous dispersion regimes generated PMI frequency shifts that show good agreement with the predicted values over a 70 THz range. These results could lead to amplifiers and oscillators based on PMI.  相似文献   

11.
A theoretical investigation of the nonlinear copropagation of two optical pulses of different frequencies in a photonic crystal fiber is presented. Different phenomena are observed depending on whether the wavelength of the signal pulse is located in the normal or the anomalous dispersion region. In particular, it is found that the phenomenon of pulse trapping occurs when the signal wavelength is located in the normal dispersion region while the pump wavelength is located in the anomalous dispersion region. The signal pulse suffers cross-phase modulation by the Raman shifted soliton pulse and it is trapped and copropagates with the Raman soliton pulse along the fiber. As the input peak power of the pump pulse is increased, the red-shift of the Raman soliton is considerably enhanced with the simultaneous further blue-shift of the trapped pulse to satisfy the condition of group velocity matching. PACS 42.65.Tg; 42.81.Dp  相似文献   

12.
单模光纤中受激喇曼散射对调制不稳定性的影响   总被引:5,自引:5,他引:0  
基于修正的非线性薛定谔方程,利用线性扰动理论和数值方法研究了单模光纤中的调制不稳定性.由于受激喇曼散射的作用,使得喇曼增益谱叠加到光纤中的调制不稳定性增益谱上.这样,原本调制稳定的光纤正常色散区也出现了调制不稳定性;而在反常色散区,随着初始功率的增加,常规的调制不稳定性增益谱的增益和频谱范围均增大,而喇曼增益谱的增益增大但其频谱范围基本不变,这样导致常规的不稳定区域逐渐侵入并最终掩盖喇曼增益区.数值模拟验证了解析结果的正确性,并证明了利用反常色散情形下的调制不稳定性可以产生超短脉冲序列,但这种脉冲序列的进一步传输将会出现喇曼孤子自频移现象.  相似文献   

13.
Highly efficient Cherenkov radiation(CR) is generated by the soliton self-frequency shift(SSFS) in the irregular point of a hollow-core photonic crystal fiber(HC-PCF) in our laboratory.The impacts of pump power and wavelength on the CR are investigated,and the corresponding nonlinear processes are discussed.When the average power of the 120 fs pump pulse increases from 500 mW to 700 mW,the Raman soliton shifts from 2210 nm to 2360 nm,the output power of the CR increases by 2.3 times,the maximum output power ratio of the CR at 539 nm to that of the residual pump is calculated to be 24.32:1,the width of the output optical spectrum at the visible wavelength broadens from 35 nm to 62 nm,and the conversion efficiency η of the CR in the experiment can be above 32%.  相似文献   

14.
Using the tunable pump pulses with about lOO fs pulse duration and 1064 nm central wavelength; the polarization-, wavelength- and power-dependent anti-Stokes lines are generated and modulated simultaneously in a polarization-maintaining photonie crystal fiber (PM-PCF) with two zero-dispersion wavelengths. By accurately controlling the polarization directions, the wavelength and the power of the pump pulse in the fiber anomalous region close to the second zero-dispersion wavelength of the PM-PCF, the output anti-Stokes pulse spectra can be tuned between 563 nm and 603 nm, which is in good agreement with the theoretical simulation. The color conversion of the mode image from yellow to orange is also observed with the different polarization pump pulses. These results can be attributed to the combined interaction between the fiber birefringence (including linear- and nonlinear- birefringence) and dispersion, and are attributed to phase-matching parametric four-wave mixing.  相似文献   

15.
Supercontinuum (SC) growth in highly nonlinear fibers is compared for cw pumping in the anomalous- and normal-dispersion regimes. For anomalous-dispersion pumping, the combined effects of modulation instability (MI) and stimulated Raman scattering (SRS) contribute to spectral broadening. Furthermore, breakup of the cw light into ultrashort pulses by MI leads to the formation of a Raman pulse that evolves into a soliton, as evidenced by the observation of soliton self-frequency shift. Blueshifted, nonsolitonic radiation associated with the fission of higher-order solitons is also present in the SC spectra. For normal-dispersion pumping, SRS seeds the SC growth by generating several cascaded Stokes orders. When the Stokes orders are shifted into the anomalous-dispersion regime at higher launch powers, MI again causes soliton formation. Broadband continua are generated when the laser is positioned as far away as 191 nm from the zero-dispersion wavelength in normal dispersion.  相似文献   

16.
Broadband supercontinuums (SC) are generated by soliton self-frequency shift (SSFS) of hollow-core photonic crystal fiber (HC-PCF) in our laboratory. With the pump works at 810 nm when the pump power increase from 400 to 600 mW, the Raman Soliton shifts from 2089 to 2215 nm, the bandwidth of SC increases from 2213 to 2320 nm. The ultra-violet part of SC is below 180 nm, and the mid-infrared part of SC exceeds 2500 nm. Moreover, the influence of pump power on SC is also analyzed.  相似文献   

17.
Ying Huang 《中国物理 B》2022,31(5):54211-054211
A circular photonic crystal fiber (C-PCF) based on As2Se3 is designed, which has three zero dispersion wavelengths and flat dispersion. Using this fiber, a wide mid-infrared supercontinuum (MIR-SC) can be generated by launching a femtosecond pulse in the first anomalous dispersion region. The simulation results show that the MIR-SC is formed by soliton self-frequency shift and direct soliton spectrum tunneling on the long wavelength side and self-phase modulation, soliton fission on the short wavelength side. Further, optical shocking and four-wave mixing (FWM) are not conducive to the long-wavelength extension of MIR-SC, while the number and intensity of fundamental solitons have a greater effect on the short-wavelength extension of MIR-SC. The generation of optical shocking waves, FWM waves and fundamental solitons can be obviously affected by changing the fiber length and input pulse parameters, so that the spectrum range and flatness can be adjusted with great freedom. Finally, under the conditions of 4000 W pulse peak power, 30 fs pulse width, 47 mm fiber length, and 0 initial chirp, a wide MIR-SC with a coverage range of 2.535 μm-16.6 μm is obtained. These numerical results are encouraging because they demonstrate that the spread of MIR-SC towards the red and blue ends can be manipulated by choosing the appropriate incident pulse and designing optimized fiber parameters, which contributes to applications in such diverse areas as spectroscopy, metrology and tomography.  相似文献   

18.
An index-guiding photonic crystal fibre with a small hole in the core is fabricated. The simulated results show that the first higher order mode possesses two zero-dispersion wavelengths, and the phase-matching is possible in the anomalous dispersion regime between the two zero-dispersion wavelengths. Using 200 fs Ti: sapphire laser of 820, 830 and 840nm, the anti-Stokes line around 530nm can be generated efficiently. The maximum ratio of the anti-Stokes signal energy to the pump component in the output spectrum is estimated to be 1.03 and the conversion efficiency is above 50%.  相似文献   

19.
靳爱军  王泽锋  侯静  王彦斌  姜宗福 《物理学报》2012,61(12):124211-124211
使用复互相干度的定义对超连续谱的相干性进行了数值计算,得到了不同功率抽运情况下的脉冲谱展宽以及超连续谱相干性的变化.结果表明孤子自频移以及色散波辐射是抽运波长位于光纤反常色散区情况下超连续谱展宽的主要物理机理,而超连续谱的相干性则主要受到调制不稳定性的影响.调制不稳定性放大抽运脉冲自身携带的随机噪声,使得非线性效应产生的光谱成分具有随机的相位与幅度,引起超连续谱相干性的下降. 抽运功率越高, 调制不稳定性增益越高,噪声对超连续谱产生的作用越强, 超连续谱的相干性越差.要获得高相干的超连续谱, 需采用峰值功率较小的脉冲进行抽运.要获得大谱宽高相干的超连续谱, 则需要合理选择抽运脉冲功率.  相似文献   

20.
徐永钊  刘敏霞  张耿  叶海 《发光学报》2016,37(4):439-445
基于非线性薛定谔方程,数值研究了色散平坦渐减光纤中非线性啁啾脉冲的传输及超连续谱的产生。研究结果表明,初始啁啾对脉冲传输及超连续谱产生的影响与泵浦条件和光纤参量的选取有很大关系。当色散平坦渐减光纤具有小的归一化二次色散系数时,适当的正啁啾能显著增强超连续谱的带宽,而负啁啾和太大的正啁啾抑制超连续谱的带宽。能增强超连续谱带宽的正啁啾有一个较宽的范围,但随着输入脉冲孤子阶数的降低,该范围将变窄。当色散平坦渐减光纤具有大的归一化二次色散系数同时输入脉冲为低阶孤子时,初始啁啾对超连续谱带宽的增强效果不明显,初始啁啾接近为0时可产生最宽的超连续谱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号