首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photoelectrochemical response to the electromagnetic radiation over the visible range is particularly sought for from the point of view of the efficiency of hydrogen generation by water photolysis in a photoelectrochemical solar cell, PEC. The PEC used in this work comprises thin film TiO2 - based photoanode, Pt foil covered with Pt black as a cathode and SCE as a reference electrode, immersed in an electrolyte solution. Titanium dioxide thin films are deposited by means of rf reactive sputtering and modified, when necessary, by Au or Ag ultra-thin overcoatings. Here we show that even unmodified TiO2 photoanode, shows a photocurrent peak over the visible range of the light spectrum (λ = 500-650 nm). The effect of the surface modification by noble metals and properties of the aqueous electrolyte on the visible photocurrent are studied. The optical spectra indicate an increased absorption due to noble metal deposits at 410 nm for Ag and at 600 nm for Au. In contrast, the photocurrent peak over the visible range (500 nm < λ < 650 nm) changes its symmetry and decreases in intensity with the increasing thickness of noble metals layers. The visible photoresponse is explained in terms of OH formation at the interface between TiO2 electrode and aqueous electrolyte.  相似文献   

2.
In order to improve visible light photocatalytic activities of the nanometer TiO2, a novel and efficient Cr,S-codoped TiO2 (Cr-TiO2-S) photocatalyst was prepared by precipitation-doping method. The crystalline structure, morphology, particle size, and chemical structure of Cr-TiO2-S were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) techniques, respectively. Results indicate that the doping of Cr and S, cause absorption edge shifts to the visible light region (λ > 420 nm) compare to the pure TiO2, reduces average size of the TiO2 crystallites, enhances desired lattice distortion of Ti, promotes separation of photo-induced electron and hole pair, and thus improves pollutant decomposition under visible light irradiation. The photocatalytic activities of Cr-TiO2-S nanoparticles were evaluated using the photodegradation of methyl orange (MO) as probe reaction under the irradiation of UV and visible light and it was observed that the Cr-TiO2-S photocatalyst shows higher visible photocatalytic activity than the pure TiO2. The optimal Cr-TiO2-S concentration to obtain the highest photocatalytic activity was 5 mol% for both of Cr and S.  相似文献   

3.
CdS nanoparticles were in situ deposited on TiO2 nanosheets and nanorods under hydrothermal conditions, respectively. The effect of CdS–TiO2 interface structure on hydrogen production activity was mainly investigated under visible light irradiation. The results showed that the TiO2 nanosheet-based CdS/TiO2 showed a higher activity and a higher cyclability than the nanorod-based sample due to the stronger interaction of CdS with the (0 0 1) facets of TiO2 than with the (1 0 1) facets. It was proposed that the strong interaction between CdS nanoparticles and TiO2 nanosheets effectively refrains the recombination of electrons and holes.  相似文献   

4.
TiO2 nanotube (NT) arrays modified by Fe2O3 with high sensibility in the visible spectrum were first prepared by annealing anodic titania NTs pre-loaded with Fe(OH)3 which was uniformly clung to the titania NTs using sequential chemical bath deposition (S-CBD). The photoelectrochemical performances of the as-prepared composite nanotubes were determined by measuring the photo-generated currents and voltages under illumination of UV-vis light. The titania NTs modified by Fe2O3 showed higher photopotential and photocurrent values than those of unmodified titania NTs. The enhanced photoelectrochemical behaviors can be attributed to the modified Fe2O3 which increases the probability of charge-carrier separation and extends the range of the TiO2 photoresponse from ultraviolet (UV) to visible region due to the low band gap of 2.2 eV of Fe2O3.  相似文献   

5.
In this paper, WxTi1−xO2 solid solutions (x = 0.000, 0.005, 0.010, 0.015, and 0.020) microspheres were synthesized with an aerosol-assisted flow synthesis method. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption, UV-vis diffuse reflectance spectrum (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the as-prepared catalysts were measured by the degradation of rhodamine B (RhB) under visible light irradiation (λ ≥ 420 nm). All the solid solutions exhibited higher photocatalytic activities than pure TiO2 and the W0.015Ti0.985O2 solid solution possessed the highest photocatalytic activity. The degradation constant of RhB on W0.015Ti0.985O2 solid solution catalyst was about 15 times of that of the pure TiO2 and 25 times of that of Degussa P25, respectively. This study provides an effective method to prepare visible light photocatalysts on a large scale.  相似文献   

6.
Nano-silicon (nc-Si) was utilized as the charges generator to promote the photocatalytic and super-hydrophilic reactivity of TiO2 film under visible light irradiation. The photocatalytic ability of TiO2/nc-Si composite photocatalyst was evaluated by a set of experiments to photodecompose 100 ppm methylene blue (MB) in aqueous solution. And the super-hydrophilic property was characterized by measuring the water droplet contacts angle, under visible light irradiation in atmospheric air and at room temperature. Under 100 mW/cm2 visible light irradiation, the droplet contact angles were reduced to 0° within 4 h with nc-Si charge generator. Additionally, the rate constant of MB photo-degradation was promoted 6.6 times.  相似文献   

7.
To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Nitrogen and carbon doping TiO2−xyNxCy films were obtained by heating the TiO2 gel in an ionized N2 gas and then were calcined at 500 °C. The TiO2−xyNxCy films have revealed an improvement over the TiO2 films under visible light (wavelength, 500 nm) in optical absorption and photocatalytic activity such as photodegradation of methyl orange. X-ray photoemission spectroscopy, infrared spectrum and UV-visible (UV-vis) spectroscopy were used to find the difference of two kinds of films. Nitrogen and carbon doped into substitutional sites of TiO2 has been proven to be indispensable for band-gap narrowing and photocatalytic activity.  相似文献   

8.
N-doped TiO2 nanotube arrays (NTN) were prepared by anodization and dip-calcination method. Hydrazine hydrate was used as nitrogen source. The surface morphology of samples was characterized by SEM. It showed that the mean size of inner diameter was 65 nm and wall thickness was 15 nm for NTN. The ordered TiO2 nanotube arrays on Ti substrate can sustain the impact of doping process and post-heat treatment. The atomic ratio of N/Ti was 8/25, which was calculated by EDX. Photoelectrochemical property of NTN was examined by anodic photocurrent response. Results indicated the photocurrent of NTN was nearly twice as that of non-doped TiO2 nanotube arrays (TN). Photocatalytic activity of NTN was investigated by degrading dye X-3B under visible light. As a result, 99% of X-3B was decomposed by NTN in 105 min, while that of TN was 59%.  相似文献   

9.
Metal-insulator-metal (MIM) capacitors were fabricated using ZrO2 films and the effects of structural and native defects of the ZrO2 films on the electrical and dielectric properties were investigated. For preparing ZrO2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O2 atmosphere with/without UV light irradiation (λ = 193 nm, Deep UV lamp). The ZrO2(∼12 nm) films on Pt(∼100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage (C-V) and current-voltage (I-V) measurements were carried out on MIM structures. ZrO2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.  相似文献   

10.
Titanium dioxide photocatalysts co-doped with iron (III) and lanthanum were prepared by a facile sol-gel method. The structure of catalysts was characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by the degradation of methylene blue in aqueous solutions under visible light (λ > 420 nm) and UV light irradiation. Doping with Fe3+ results in a lower anatase to rutile (A-R) phase transformation temperature for TiO2 particles, while doping with La3+ inhibits the A-R phase transformation, and co-doping samples indicate that Fe3+ partly counteracts the effect of La3+ on the A-R transformation property of TiO2. Fe-TiO2 has a long tail extending up the absorption edges to 600 nm, whereas La-TiO2 results in a red shift of the absorption. However, Fe and La have synergistic effect in the absorption of TiO2. Compared with Fe3+ and La3+ singly doped TiO2, the co-doped simple exhibits excellent visible light and UV light activity and the synergistic effect of Fe3+ and La3+ is responsible for improving the photocatalytic activity.  相似文献   

11.
Novel Pd/InVO4-TiO2 thin films with visible light photocatalytic activity were synthesized from the Pd and InVO2 co-doped TiO2 sol via sol-gel method. The photocatalytic activities of Pd/InVO4-TiO2 thin films were investigated based on the oxidative decomposition of methyl orange in aqueous solution. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy (UV-vis). The results indicate that the Pd/InVO4-TiO2 thin films are compact, uniform and consist of sphere nanoparticles with diameters about 80-100 nm. The UV-vis spectra show that the Pd/InVO4-TiO2 thin films extend the light absorption spectrum toward the visible region. XPS results reveal that doped Pd exist in the form of metallic palladium. The photocatalytic experiments demonstrate that Pd doping can effectively enhance the photocatalytic activities of InVO4-TiO2 thin films in decomposition of aqueous methyl orange under visible light irradiation. It has been confirmed that Pd/InVO4-TiO2 thin films could be excited by visible light (E < 3.2 eV) due to the existence of the Pd and InVO4 doped in the films.  相似文献   

12.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

13.
A novel long-lasting phosphorescence phosphor, Mn2+-activated Mg2SnO4, has been synthesized and its optical properties have been investigated. The Mg2SnO4:Mn2+ emits green light with high luminance, upon UV irradiation, centered at 499 nm from the spin forbidden transitions of the d-electrons in Mn2+ ions. The CIE chromaticity coordinates of the Mg2SnO4:Mn2+ phosphor are x=0.0875 and y=0.6083 under 254 nm UV excitation. The phosphorescence can be observed by the naked eyes (0.32 mcd/m2) in the dark clearly for over 5 h after the 5 min UV irradiation. Thermoluminescence has been studied and the mechanism of the long-lasting phosphorescence has been discussed.  相似文献   

14.
In the current work, TiO2 nanotube array was prepared via electrochemical anode method. Then the Bi2O3 nanoparticles were deposited onto the TiO2 nanotube array via dip-coating method from an amorphous complex precursor. The crystal structures were characterized via X-ray diffraction analysis. Their surface textures were observed via electron-scanning microscope. The prepared composite array electrode exhibited high photoelectrocatalytic activities towards degrading organic contaminants under visible light irradiation. High photoelectrocatalytic activities were also exhibited under UV light irradiation. The catalytic mechanism was discussed based on the analysis of electrochemical and degradation kinetics results. It is suggested a P (Bi2O3)-N (TiO2) junction was formed to increase the catalytic activates. The stability of the electrode materials was confirmed finally.  相似文献   

15.
TiO2/Fe2O3 core-shell nanocomposition film has been fabricated via two-step method. TiO2 nanorod arrays are synthesized by a facile hydrothermal method, and followed by Fe2O3 nanoparticles deposited on TiO2 nanorod arrays through an ordinary chemical bath deposition. The phase structures, morphologies, particle size, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and ultraviolet-visible (UV-vis) spectrophotometer. The results confirm that Fe2O3 nanoparticles of mean size ca. 10 nm coated on the surface of TiO2 NRs. After depositing Fe2O3, UV-vis absorption property is induces the shift to the visible-light range, the annealing temperature of 600 °C is the best condition for UV-vis absorption property of TiO2/Fe2O3 nanocomposite film, and increasing Fe content, optical activity are enhanced one by one. The photoelectrochemical (PEC) performances of the as-prepared composite nanorods are determined by measuring the photo-generated currents under illumination of UV-vis light. The TiO2 NRs modified by Fe2O3 show the photocurrent value of 1.36 mA/cm2 at 0 V vs Ag/AgCl, which is higher than those of unmodified TiO2 NRs.  相似文献   

16.
In this study we present the effects of iron oxide (Fe2O3) on titanium dioxide (TiO2) in synthesising visible-light reactive photocatalysts. A Fe2O3-TiO2 composite photocatalyst was synthesized from Fe2(SO4)3 and Ti(SO4)2 by a ethanol-assisted hydrothermal method. The preparation conditions were optimized through the investigation of the effects of hydrothermal temperature and time as well as molar ratio of Ti to Fe on the photocatalytic activity. The visual, physical and chemical properties of the Fe2O3-TiO2 composites were investigated. The results showed that α-Fe2O3 and anatase TiO2 were present in the composites. The Fe2O3-TiO2 synthesized under optimum condition consisted of mesoporous structure with an average pore size of 4 nm and a surface area of 43 m2/g. Under visible and solar light irradiation, the photocatalytic activity of optimized sample was significantly higher than that of pure TiO2. This sample led to a photodegradation efficiency of 90% and 40% of auramine under visible light and solar light, respectively.  相似文献   

17.
The mesoporous N, S-codoped TiO2(B) nanobelts are synthesized via hydrothermal synthesis and post-treatment, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption measurements (BET), X-ray photoelectron spectra (XPS), and UV-vis diffuse reflectance spectra (DRS). The results show that the prepared samples are mesoporous structured and exhibit stronger absorption in the visible light region with red shift in the absorption edge. The photocatalytic activity of N, S-codoped mesoporous TiO2(B) nanobelts is evaluated by the photocatalytic photodegradation of potassium ethyl xanthate (KEX) under visible light irradiation. It is found that the photocatalytic activity of the prepared samples increases with increasing the molar ratio of thiourea to Ti (R). At R = 3, the photocatalytic activity of the N, S-codoped TiO2(B) sample TBLTS-3 reaches a maximum value. With further increasing R, the photocatalytic activity of the sample decreases. The high photocatalytic activity of N, S-codoped TiO2(B) nanobelts can be attributed to the balance between strong absorption in visible light region and low recombination rate of electron/hole pairs.  相似文献   

18.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

19.
The photocatalytic degradation of methylene blue and 4-chlorophenol on nanocrystalline TiO2 (nc-TiO2) under UV irradiation was investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Nanocrystalline TiO2 films were prepared from suspensions containing TiO2-crystallites of different average sizes, the smallest one being 12 nm. The organic substances (either methylene blue or 4-chlorophenol) were applied to these films. The specimens were studied in the pristine state and upon UV exposure. The UV illuminations were carried out both under atmospheric conditions and in situ under ultrahigh vacuum in the ToF-SIMS instrument. Distinct mass signals from the parent molecules and from fragment ions are observed for the as-prepared samples. Upon irradiation with UV light under atmospheric conditions, the surface composition is significantly changed, an observation ascribed to photocatalytic reactions induced by UV photons: the parent molecule signals are strongly diminished whereas fragmentation products are identified to be present at the TiO2 surfaces. UV irradiations carried out under different vacuum conditions in the ToF instrument (ultrahigh vacuum, air or oxygen adsorption) indicate that varying ambient conditions may influence the photocatalytic reaction on the nanocrystalline TiO2 films.  相似文献   

20.
TiO2 thin films with novel nanocoral-like morphology were successfully grown directly onto the glass and conducting fluorine doped tin oxide coated glass substrates via multi-step hydrothermal (MSH) process. Titanium chloroalkoxide [TiCl2 (OEt)2 (HOEt)2)] precursor was used in an aqueous saturated NaCl in presence of 1 mM HCl catalyst and HNO3 peptizer at 120 °C. Reaction time varied from 3 to 12 h. The morphological features and physical properties of TiO2 films were investigated by field emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Fourier transform IR spectroscopy, Fourier transform Raman spectroscopy, room temperature photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The surface morphology revealed the formation of TiO2 corals having nanosized (30-40 nm) polyps. The photoelectrochemical properties of the TiO2 nanocoral electrodes were investigated in 0.1 M NaOH electrolyte under UV illumination. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via controlled thickness of TiO2 nanocorals and (ii) the substantial increase in short circuit photocurrent (Jsc) due to the improved charge transport through TiO2 nanocorals prepared via MSH process. This approach would be quite useful for the fabrication of nanocoral architecture that finds key applications in photocatalysis, dye-sensitized solar cells and hybrid solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号