首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Reflection phase and amplitude of grazing incidence multilayer mirrors for CuKα radiation have been studied theoretically to evaluate phase correction effects of multilayer surface milling, which revealed good possibilities of correcting mirror substrate figure errors for focusing and imaging application. The mirror multilayers composed of base materials of Cu and Ni were studied in combination with Al, Be, C, Mg and Si for high reflectivity at a grazing angle of 3° incidence. The theoretical surface milling of Cu/Al multilayers of a period thickness of 1.478 nm provides phase correction of 1.7° per period, which corresponds to an accurate correction of substrate figure errors at a rate of 0.007 nm per period. Thus, the milling after the multilayer fabrication, compared to the milling before the multilayer fabrication, enables far more accurate phase correction with 200 times finer control.  相似文献   

2.
Mo x Si y /Si multilayers with a period thickness of ∼7.5 nm and bilayers Mo x Si y /Si have been fabricated by e-beam evaporation in UHV at a deposition temperature of 150°C [1]. The composition of the as-deposited layer systems and changes in the composition after baking the samples have been studied with high-resolution RBS. For a multilayer with a mixing ratioy/x≃2, no interdiffusion is observed up to a baking temperature of 830°C. For samples with a mixing ratioy/x≃1, diffusion is observed up to a baking temperature of 630°C, resulting in a mixing ratio close toy/x≃2. This mixing ratio remains almost stable up to ∼830°C, and considerable interdiffusion is only observed in those systems where regions with a mixing ratio smaller than 2 still exist. Possible reasons for the high thermal stability of the samples are the lack of a concentration gradient for Si in the system and/or the crystallization of MoSi2.  相似文献   

3.
Platinum-carbon multilayer mirrors with a bilayer spacing of 50 Å were fabricated in an ultrahigh vacuum electron beam evaporator. The thermal stability of these multilayers was studied under vacuum annealing using X-ray reflectivity and X-ray diffraction. Up to 450°C, the bilayer spacing increases monotonically accompanied by a gradual increase in crystallite size and grain texture. At 500°C multilayer reflection vanishes, platinum crystallites grow abruptly, and there is a strong texture of platinum in the [220] -plane. Possible reasons for thermally induced structural modifications in these multilayers are discussed.  相似文献   

4.
Amorphous CoMoN/CN compound soft-X-ray multilayers were fabricated by dual-facing-target sputtering. Their structural thermal stability has been investigated by monitoring the structural evolutions of CN and CoMoN sublayers at annealing temperatures up to 800 °C using complementary measurement techniques, and measuring the coefficient of interfacial diffusion at annealing temperatures below 300 °C. The period expansion at annealing temperatures below 600 °C, which is usually observed in annealed metal/carbon soft-X-ray multilayers, is only 5%. The enhanced sp2 to sp3 bond ratio caused by the incorporation annealing effect of nitrogen [1] is thought to be responsible for the improved thermal stability of CN sublayers. Mo addition greatly suppresses the structural thermal evolution of CoMoN sublayers. XPS and TEM analyses indicate that the strong chemical bonding between N and Co atoms and Mo nitride aggregation in the grain boundary of cobalt are the main mechanisms for the high thermal stability of CoMoN sublayers. The layered structure of the CoMoN/CN multilayers still exists at the annealing temperature of 800 °C, while Co/C and CoN/CN multilayers have already been destroyed at this temperature. Compared with Co/C and CoN/CN multilayers, the smaller negative interdiffusivity measured by X-ray diffraction reveals the stable interfaces of CoMoN/CN multilayers. These results illustrate that refractory metal incorporation and strong chemical bond establishment are quite effective in obtaining thermally highly stable compound soft-X-ray optical multilayers . PACS 68.65+g; 68.55.Ln; 68.35.Fx; 68.60.Dv  相似文献   

5.
The interplay between optical performance and the thermally activated interface chemistry of periodic Mg/SiC multilayers designed for application at 30.4 nm are investigated by optical (hard X-ray, soft X-ray and ultraviolet ranges, i.e. from 0.154 to 30.4 nm) reflectivity and X-ray emission spectroscopy. The multilayers are prepared by magnetron sputtering and then annealed up to a temperature of 500 °C. Two clear changes take place in the multilayer upon annealing. At first, between 200 and 300 °C a strong decrease of the reflectivity is observed, due to the development of interfacial roughness following the crystallization of the Mg layers. No interfacial compound is detected. Then, between 350 and 400 °C there is formation of the Mg2Si magnesium silicide at the interfaces following the reaction between the Mg and SiC layers. This also leads to the almost total loss of reflectivity of the multilayer. Thus, this kind of multilayer is thermally stable only for application requiring no heating above 200 °C.  相似文献   

6.
ZnO films were grown on Al2O3 (0001) substrates by metal organic chemical vapor deposition at temperatures of Tg=150300 °C. Epitaxial growth was obtained for Tg200 °C. The in-plane orientation of the ZnO unit cells was found to change from a no-twist one with respect to that of the substrate at Tg=200 °C to a 30°-twist one at Tg=300 °C. Absorption and photoluminescence were observed from the film grown at 150 °C, although there was no evidence of epitaxial growth. Films grown at Tg200 °C exhibited smoother surfaces. Moreover, all the films grown at Tg=150300 °C revealed acceptor-related emission peaks, indicating the incorporation of acceptors into the films. PACS 81.15.Gh; 78.55.Et; 78.66.Hf  相似文献   

7.
The present study is focused on the influence of vacuum thermal treatment on surface/interface electronic properties of Si/Ge multilayer structures (MLS) characterized using X-ray photoelectron spectroscopy (XPS) technique. Desired [Si(5 nm)/Ge(5 nm)]×10 MLS were prepared using electron beam evaporation technique under ultra high vacuum (UHV) conditions. The core-level XPS spectra of as-deposited as well as multilayer samples annealed at different temperatures such as 100 °C, 150 °C and 200 °C for 1 h show substantial reduction in Ge 2p peak integrated intensity, whereas peak intensity of Si 2p remains almost constant. The complete interdiffusion took place after annealing the sample at 200 °C for 5 h as confirmed from depth profiling of annealed MLS. The asymmetric behaviour in intensity patterns of Si and Ge with annealing was attributed to faster interdiffusion of Si into Ge layer. However, another set of experiments on these MLS annealed at 500 °C suggests that interdiffusion can also be studied by annealing the system at higher temperature for relatively shorter time duration.  相似文献   

8.
The optical properties of Sc/Si periodic multilayers are analyzed at three wavelengths in the X-ray range: 0.154, 0.712 and 12.7 nm. Fitting the reflectivity curves obtained at these three wavelengths enable us to constrain the parameters, thickness, density and roughness of the various layers, of the studied multilayers. Scattering curves were also measured at 12.7 nm on some samples to obtain an estimate of the correlation length of the roughness. Two sets of multilayers are used, with and without B4C diffusion barrier at the interfaces. To see the efficiency of the B4C layers the measures are performed after annealing up to 400 °C. A dramatic change of the structure of the Sc/Si multilayer is observed between 100 and 200 °C leading to a strong loss of reflectivity. For the Sc/B4C/Si/B4C multilayer the structure is stable up to 200 °C after which a progressive evolution of the stack occurs.  相似文献   

9.
The polycrystalline Ti/TiNx multilayer films were deposited by magnetron sputtering, and the as-deposited multilayer coatings were annealed at 500-800 °C for 2-4 h in vacuum. We investigated the effects of annealing temperature and annealing time on the microstructural, interfacial, and mechanical properties of the polycrystalline Ti/TiNx multilayer films. It was found that the hardness increased with annealing temperature. This hardness enhancement was probably caused by the preferred crystalline orientation TiN(1 1 1). The X-ray reflectivity measurements showed that the layer structure of the coatings could be maintained after annealing at 500 °C and the addition of the Si3N4 interlayer to Ti/TiNx multilayer could improve the thermal stability to 800 °C.  相似文献   

10.
Six Al(1%wtSi)/Zr multilayers are deposited on Si substrates by using the direct-current magnetron sputtering system, and annealed from 100?°C to 500?°C temperature in a vacuum furnace for 1?h. To evaluate the thermal stability of Al(1%wtSi)/Zr multilayers, the multilayers were characterized by grazing incidence X-ray reflectance, X-ray diffraction, X-ray emission spectroscopy, and near-normal incident extreme ultraviolet (EUV) reflection. The symmetric and asymmetric interlayer models are used to present the interfacial structure before and after 300?°C. The Al(1%wtSi)/Zr multilayer annealed up to 200?°C maintains the initial symmetric multilayer structure, and keeps almost the similar EUV reflectivity as the nonannealed sample. From 300?°C, interdiffusion is much greater at the Zr/Al interface compared with the Al/Zr interface. And the interfacial phases of Al-Zr alloy transform from amorphous to polycrystalline, which induces the deterioration of multilayer structure and the decrease of EUV reflectivity. However, up to 500?°C, the polycrystalline Al-Zr compound does not destroy the multilayer completely.  相似文献   

11.
Thin films of zirconium silicate ZrxSi1-xO2 (with x=0.69), a material that has been suggested as a possible high-k dielectric, are deposited on silicon wafers by pulsed laser deposition (PLD) under different deposition and post-annealing conditions. The morphology and electrical properties of these films are characterized. It is shown that the films remain amorphous after an ex situ rapid thermal annealing (RTA) at temperatures as high as 800 °C. For the 6 nm thick film deposited at 300 °C in an O2 ambient with a N2 ambient post-RTA at 500 °C for 5 min, the equivalent oxide thickness (EOT) is 1.9 nm, as evaluated from capacitance-voltage (C–V) measurements. The samples prepared with the N2 ambient post-RTA show a slightly higher leakage current than that for samples annealed in the O2 ambient. For the films deposited in N2, the smallest EOT of 1.1 nm is obtained, and the films have fair electrical properties in spite of the high interface state density and relatively higher leakage. PACS 77.55.+f; 81.15.Fg; 81.40.Ef  相似文献   

12.
Carpene  Ettore  Landry  Felix  Han  Meng  Lieb  Klaus Peter  Schaaf  Peter 《Hyperfine Interactions》2002,139(1-4):355-361
Laser nitriding has revealed to be a very promising and effective treatment to improve the technical properties, like surface hardness and corrosion-wear resistance, of iron and steels. The high nitrogen concentration, the fastness and precision of the treatment and the easy experimental setup make this technique very suitable for applications on industrial scale. Samples of pure iron and austenitic stainless steel have been irradiated with ns laser pulses in the UV radiation range and analyzed by means of Conversion Electron Mössbauer Spectroscopy (CEMS), Resonant Nuclear Reaction Analysis (RNRA), Grazing Incidence X-Ray Diffraction (GXRD) and Microhardness. Mössbauer Spectroscopy, in particular, is capable of detecting the phase composition of the nitrided layer and therefore represents an essential tool for these kind of analysis. The thermal stability of the treated samples have been investigated by subsequent annealings at increasing temperatures in vacuum and in air. For iron samples the annealing treatment at 250°C shows a rather drastic phase transformation from phase (fcc) into (Fe4N) while a strong depletion of N has been observed for 400°C or higher, regardless of the ambient pressure (atmospheric or vacuum). On the other hand, the stainless steel shows a very good thermal stability up to 500°C, but higher temperatures induce a gradual decrease in the nitrogen concentration which seems to be a common feature for both pure iron and stainless steel. Furthermore, annealing in air leads to the formation of a thin oxide layer on the surface of the iron sample which is easily characterized by Mössbauer spectroscopy.  相似文献   

13.
Series of [FePt(4min)/Fe(tFe)]10 multilayers have been prepared by RF magnetron sputtering and post-annealing in order to optimize their magnetic properties by structural designs. The structure, surface morphology, composition and magnetic properties of the deposited films have been characterized by X-ray diffractometer (XRD), Rutherford backscattering (RBS), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX) and vibrating sample magnetometer (VSM). It is found that after annealing at temperatures above 500 °C, FePt phase undergoes a phase transition from disordered FCC to ordered FCT structure, and becomes a hard magnetic phase. X-ray diffraction studies on the series of [FePt/Fe]n multilayer with varying Fe layer thickness annealed at 500 and 600 °C show that lattice constants change with Fe layer thickness and annealing temperature. Both lattice constants a and c are smaller than those of standard ones, and lattice constant a decreases as Fe layer deposition time increases. Only a slight increase in grain size was observed as Fe layer decreased in samples annealed at 500 °C. However, the increase in grain size is large in samples annealed at 600 °C. The coercivities of [FePt/Fe]n multilayers decrease with Fe layer deposition time, and the energy product (BH)max reaches a maximum in the samples with Fe layer deposition time of 3 min. Comparison of magnetic properties with structure showed an almost linear relationship between the lattice constant a and the coercivities of the FePt phase.  相似文献   

14.
张金帅  黄秋实  蒋励  齐润泽  杨洋  王风丽  张众  王占山 《物理学报》2016,65(8):86101-086101
W/Si多层膜反射镜在硬X射线天文望远镜中有重要应用. 为减小其应力对反射镜面形和望远镜分辨率的影响, 同时保证较高的反射率, 采用150, 175和200 ℃ 的低温退火工艺对采用磁控溅射镀制的W/Si周期多层膜进行后处理. 利用掠入射X射线反射测试和样品表面面形测试对退火前后W/Si多层膜的应力和结构进行表征. 结果表明, 在150 ℃ 退火3 h 后, 多层膜1级峰反射率和膜层结构几乎没有发生变化, 应力减少约27%; 在175 ℃ 退火3 h后, 多层膜膜层结构开始发生变化, 应力减少约50%; 在200 ℃退火3 h 后, 多层膜应力减小超过60%, 但1级布拉格峰反射率相对下降17%, 且膜层结构发生了较大变化. W, Si界面层的增大和相互扩散加剧是应力和反射率下降的主要原因.  相似文献   

15.
Copper-oxide films are deposited by plasma-enhanced CVD using copper acetylacetonate as a precursor. The influence of various experimental parameters on deposition rate, film composition and resistivity have been studied. The substrate temperature and the bias are the parameters which affect these properties the most. An increase of the substrate temperature changes the phases of the deposit from Cu2O-CuO over Cu2O to Cu. At temperatures 500° C the deposition rates are high but the films consist mainly of metallic Cu. A negative bias enhances the deposition rate only slightly but has a strong effect on the film composition and can completely balance the oxygen deficiency. At a bias of –120 V the films consist of pure CuO even at temperatures 500° C.  相似文献   

16.
高反射率Mo/B4C多层膜设计及制备   总被引:3,自引:2,他引:1       下载免费PDF全文
 运用遗传算法优化设计了Mo/B4C多层膜结构。入射光入射角度取10°时,设计的理想多层膜膜对数为150,周期为3.59 nm,Gamma值(Mo膜厚与周期的比值)为0.41,峰值反射率为33.29%。采用恒功率模式直流磁控溅射方法制作Mo/B4C多层膜。通过在Mo/B4C多层膜与基底之间增加15 nm厚的Cr粘附层,提高多层膜与基底的粘附力。另外,还采用调整多层膜Gamma值的方法减小其内应力,调整后多层膜结构周期为3.59 nm, Mo膜厚1.97 nm, B4C膜厚1.62 nm,峰值反射率26.34%。制备了膜对数为150的Mo/B4C膜并测量了其反射率,在波长7.03 nm处,Mo/B4C多层膜的近正入射反射率为21.0%。最后对测量结果进行了拟合,拟合得到Mo/B4C多层膜的周期为3.60 nm,Gamma值0.60,界面粗糙度为0.30 nm。  相似文献   

17.
The incorporation of Sn as a dopant in GaAs has been studied in the temperature range of 500°–650° C, over a wide range of Ga and As fluxes, the latter being incident as either As4 or As2 molecules. The results are explained in terms of a surface segregation model in which the behaviour at high growth temperatures (above 600 °C) approaches thermal equilibrium, but growth at lower temperatures involves a kinetic limitation to the segregation process.  相似文献   

18.
In this work, we study the influence of Pt underlayer in Pt/Sm-Co/Pt trilayers and in Pt/Sm-Co multilayers. In both cases, Pt underlayer seems to impose better crystallinity to Sm-Co layer and certainly promotes the evolution of the hard-magnetic SmCo5 phase. Particularly, in the case of multilayer form, where multiple interlayers of Pt each one serving as a dedicated underlayer for the deposition of a specific Sm-Co layer, enhanced crystallinity is observed. Moreover, post-deposition annealing facilitates these features at relatively lower temperatures (∼400 °C) than those met in thin-film cases. This behavior is also followed by enhancement of saturation magnetization, while higher temperature post-deposition thermal treatment seems to deteriorate structural and magnetic features. If annealing temperature gets over 550 °C macroscopic magnetic features depress, probably due to domination of annealing-activated processes such as Sm oxidation and formation of non-magnetic phases since Pt diffuses throughout the whole magnetic layer.  相似文献   

19.
The formation of palladium silicide Pd2Si by rapid thermal annealing of Pd layers on silicon has been studied as a function of annealing time (1–60s) in the temperature range 350–500 °C. It is shown that the results found for conventional furnace annealing (long duration, low temperature) can be extrapolated for rapid thermal annealing (shorter time, higher temperature) when taking into account the exact time dependence of the short temperature cycle. The growth rate is essentially diffusion limited and the activation energy is close to 1.1±0.1 eV. Silicide resistivity of about 30–40 cm was obtained for 200–400 nm thick Pd2Si layers formed at 400 °C for a few seconds.  相似文献   

20.
Cr/C is a promising material combination for multilayer mirror in the “near water window region” (4.4-6.7 nm). In the present paper, the effect of defects on the reflectivity of Cr/C soft X-ray multilayer mirror deposited by magnetron sputtering was studied. Formation of thin interlayer due to the interdiffusion, rough interface due to the non-sharp layer and contamination of O happened during the deposition process were found by a method combined by XPS, soft X-ray reflectivity at 4.48 nm and grazing incidence hard X-ray reflectivity at 0.154 nm. The XPS results show that both interlayers (Cr-on-C and C-on-Cr) are mixture composed of C sp2, C sp3, CO, CO, CrCr and CrO bondings. No chromium carbide was found at the interlayer probably due to the blocking of oxides’ formation. Through the analysis of X-ray reflectivity, we obtained the multilayer structure parameters (thickness and roughness) and optical constants of each layer at 4.48 nm. Based on those results, a further calculation was carried out. The result shows that the formation of the thin interlayer contributes little to the decrease of the reflectivity, the rough interface decreases the reflectivity most and the contaminant (O) not only decreases the reflectivity but also shifts the position of the peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号