首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
反应温度对聚二甲基硅烷高压合成聚碳硅烷性能的影响   总被引:4,自引:0,他引:4  
以聚二甲基硅烷(PDMS)为原料,在高压釜内高温高压合成了聚碳硅烷(PCS)先驱体.研究了反应温度对合成的PCS的Si—H键含量、支化度、Si—Si键含量、分子量及其分布、软化点及产率的影响.研究表明,随着反应温度的提高,分子量及软化点均明显增加,分子量分布变宽,支化度升高,Si—Si键含量明显降低.当反应温度低于460℃时,Si—H键含量及产率随反应温度的升高逐渐升高,当反应温度高于460℃时,由于分子间的缩合及热交联二者逐渐降低.在反应过程中PDMS首先转化为小分子量的PCS,然后是小分子PCS分子间发生脱氢及少量脱甲烷缩合使分子量长大.当反应温度高于450℃时,PCS分子量分布出现中分子量峰,Si—Si键含量较低,在室温空气中比较稳定.  相似文献   

2.
利用低分子量聚碳硅烷(L-PCS)与乙酰丙酮铝间的热聚合反应,通过调节原料配比和反应条件,合成了不同Al含量,且具有良好可纺性的聚铝碳硅烷(PACS).研究了PACS的分子量分布和分子结构,PACS纤维空气不熔化特点并与PCS纤维进行比较.结果表明,[Al(Ac Ac)3]以-Al(Ac Ac)2悬挂和-Al(Ac Ac)-桥联两种方式接入L-PCS分子结构,PACS分子量呈双峰分布.PACS中Si—H含量和反应活性随Al含量增加而下降,氧化生成的Si—OH难以进一步形成Si—O—Si交联结构.这导致Al含量越高,凝胶点温度越高,凝胶含量随温度升高增加缓慢,同时引入多余氧.通过预氧化与高温处理相结合的方法,将不熔化纤维中氧含量控制在11 wt%以下.高温处理过程中发生自交联:Si—OH间脱水生成Si—O—Si;Si—H与Si—OH或Si—CH3脱氢生成Si—CH2—Si.  相似文献   

3.
毛仙鹤  宋永才 《高分子学报》2007,(12):1141-1148
以聚二甲基硅烷裂解制备的液态聚硅烷为原料,添加引发剂过氧化二苯甲酰合成聚碳硅烷,使液态聚硅烷合成聚碳硅烷的产率提高了20%~25%.利用FTIR和GPC对反应过程进行跟踪分析,利用元素分析,1H-NMR,13C-NMR,TG-DTA和XRD对产物的组成结构和性能进行了表征,提出了过氧化二苯甲酰对液态聚硅烷合成聚碳硅烷的促进反应机理.结果表明,过氧化二苯甲酰受热分解形成自由基,促进了液态聚硅烷中的Si—Si键断裂重排,同时也引发了小分子硅碳烷中的Si—H和Si—CH3键断裂生成Si—CH2—Si结构,使聚碳硅烷分子量长大,产率提高.同时过氧化二苯甲酰分解产生的苯基和苯甲酰氧基会作为端基或侧基引入到聚碳硅烷分子中,引起产物C、O含量的少许增加.但对聚碳硅烷高温烧结后的陶瓷收率没有显著影响.  相似文献   

4.
聚锆碳硅烷陶瓷先驱体的制备与表征   总被引:1,自引:0,他引:1  
为了提高SiC陶瓷纤维的综合性能,利用聚二甲基硅烷(PDMS)热解制得的液相产物聚硅碳硅烷(PSCS)与乙酰丙酮锆(Zr(AcAc)4)反应,制备了含锆SiC陶瓷纤维的先驱体聚锆碳硅烷(PZCS).选用液相PSCS作为反应原料,可使锆元素在先驱体中分布更加均匀,并能防止Zr(AcAc)4在反应过程中升华.实验合成的PZCS化学式为SiC1.94HxO0.066Zr0.0104,数均分子量Mn=200~400,再成型性良好.反应机理研究表明,反应过程中存在PSCS裂解重排反应,Si—H键在反应中显示出很高的活性,PZCS分子量的增加是PSCS形成的Si—H键与Zr(AcAc)4的配位基发生交联反应的结果.利用PZCS制备的Si—Zr—C—O陶瓷纤维平均强度2.6GPa,平均直径11μm,性能优异.  相似文献   

5.
杨景明  杨露姣  余煜玺  程璇  张颖 《化学学报》2009,67(17):2047-2051
为了研究合成温度对聚铝碳硅烷(PACS)结构的影响, 采用具有Si—C骨架结构的低分子量液态聚碳硅烷(LPCS)与乙酰丙酮铝[Al(AcAc)3]为原料, 在300, 360和420 ℃下分别合成了固态PACS, 并对合成的PACS样品进行元素组成及结构表征. 表征结果显示, 合成温度明显影响样品的Al, O含量及Si—H键数量. 合成温度升高, Al含量与O含量增大, 但PACS中的Si—H键数量急剧减少, 在360 ℃下合成的样品具有理论Al含量, 而在300和420 ℃下合成的样品的Al含量分别小于和大于理论Al含量. 27Al MAS NMR结果显示, Al与O形成AlO4, AlO5和AlO6 三种配位形式. 反应过程中消耗Si—H键形成Si—O—Al交联结构是PACS数均分子量及多分散系数增加的主要原因.  相似文献   

6.
郑春满  李效东  余煜玺  赵大方  曹峰 《化学学报》2006,64(15):1581-1586
采用热重-差热分析、元素分析、扫描电子显微镜、凝胶渗透色谱、红外光谱和核磁共振等手段, 研究了聚铝碳硅烷(PACS)纤维预氧化过程中组成、结构演变的规律和反应机理. 结果表明, 空气中PACS纤维从210 ℃左右开始与氧发生放热反应; 随着预氧化温度的升高, 纤维的氧含量逐渐增加, 凝胶含量在氧增重为6~8 wt%时急剧增加, 纤维表面出现细小的微裂纹. 预氧化初期, 主要是Si—H键与氧的反应, 生成Si—O—Si键, 纤维的数均分子量急剧增加, 形成交联结构; 预氧化中期, Si—H键继续反应, Si—O—Si结构明显增多, 同时Si—CH3和Si—H与氧反应, 生成少量的Si—O—C结构; 预氧化后期, 纤维完全交联, 纤维中存在SiC4, SiC3H, Si—O—Si和少量的Si—O—C结构.  相似文献   

7.
高软化点聚碳硅烷的合成及可纺性   总被引:1,自引:0,他引:1  
采用聚二甲基硅烷经常压高温裂解法合成了聚碳硅烷(PCS),研究了不同反应条件下缩聚反应的特点与分子量增长的模式,探讨了聚碳硅烷的结构与可纺性之间的关系.结果表明,对应于不同分子量PCS之间的缩聚反应,高温下PCS的缩聚反应分为分子量匀速增长和加速增长2种模式.经匀速增长模式得到的PCS分子量呈双峰分布,具有良好的可纺性,而经加速增长模式得到的PCS因含有大量的支化结构,分子量呈多峰分布,可纺性较差,甚至丧失可纺性.通过控制反应条件使缩聚反应中分子量增长处于匀速模式,合成了软化点为256~287℃,数均分子量为2.3×103且具有良好可纺性的聚碳硅烷.  相似文献   

8.
以聚硅碳硅烷(PSCS)与乙酰丙酮铝(Al(AcAc)3)为原料,在常压高温条件下反应制备出聚铝碳硅烷(PACS),经过熔融纺丝制备了PACS纤维.应用GPC、IR、XPS、29Si-NMR、27Al-NMR、TG、SEM、元素分析和增重等一系列分析,分别对PACS纤维的微观组成、结构以及性能进行了分析.研究结果表明,以原料质量配比为6∶100(Al(AcAc)3∶PSCS)合成的PACS化学式为SiC2.0H7.5O0.13Al0.018,数均分子量为1700左右,最适宜制备PACS纤维;PACS纤维中主要存在SiC4、SiC3H等结构,同时存在Si—O—Al键;在氮气气氛中,PACS纤维的陶瓷产率达到52%左右;预氧化处理,PACS纤维中Si—H键与空气中的氧反应形成Si—O—Si交联结构,较聚碳硅烷(PCS)纤维易于氧化,经过预氧化的PACS纤维陶瓷产率达到80%左右,是制备耐超高温SiC(Al)陶瓷纤维的合适纤维;用预氧化PACS纤维制备的SiC(OAl)纤维和SiC(Al)纤维抗拉强度高,耐高温性能好.  相似文献   

9.
采用适当分子量的低软化点聚碳硅烷(LPCS)和四甲基二乙烯基二硅氮烷(TMDS)为原料,利用硅氢加成反应合成了高软化点聚碳硅烷(HPCS).研究了该反应的过程与特点,探讨了TMDS加入比例对产物特性的影响及其结构变化与可纺性的关系.结果表明,反应初期首先形成含乙烯基侧基的悬挂式结构,并随着硅氢加成反应完成,在LPCS分子间形成Si—N—Si桥联式结构.通过控制TMDS的加入比例,可以调控桥联反应程度从而控制产物的分子量及软化点.控制TMDS/LPCS质量比为0.08,得到了软化点为244~278℃,Mn=2.5×103,分子量呈双峰分布且具有良好可纺性的聚碳硅烷,适用于制备高性能连续Si C纤维.  相似文献   

10.
以聚碳硅烷(PCS)为原料,通过不同温度高温热解制备碳化硅(Si C)前驱体,将得到的碳化硅前驱体在1 000℃条件下采用氯气刻蚀,成功制备了碳化硅衍生碳(Si C-CDCs)。采用X-射线衍射光谱(XRD)、拉曼光谱(Raman)、透射电子显微镜(TEM)和N2吸附-脱附法等表征方法,研究了热解温度对Si C前驱体及Si C-CDCs的物相、形貌、孔结构和分布的影响;并将制备的材料作为超级电容器的电极材料,测试了其电化学性能。结果表明:采用氯气刻蚀聚碳硅烷热解生成的Si C,可以得到具有较高比表面积和亚纳米孔(1 nm)的Si C-CDCs;Si C-CDCs用作超级电容器的电极材料,具有较高的比电容且在不同的电流密度下均表现出良好的电容性能。  相似文献   

11.
采用正交设计的方法从常压合成得到的中低分子量聚碳硅烷(PCS)出发,进行热压合成制备高分子量的PCS;并运用红外、GPC、核磁共振等分析测试手段对其结构和性能进行了表征.研究表明,采用从常压合成得到的中低分子量PCS出发进行热压合成的化学方法,可以制备得到高分子量的PCS;控制热压反应温度在460-470℃、预加压力1-2 MPa、反应6 h得到先驱体PCS的Mw在6400-8500之间;热压合成后制得的高分子量PCS的支化度有所降低;通过控制热压反应时间可以较好的调控高分子量PCS重均分子量的大小.  相似文献   

12.
采用聚铝碳硅烷和聚碳硅烷共混制备含铝碳化硅的先驱体,并与直接合成得到的聚铝碳硅烷进行了比较.元素分析表明,共混法能够有效控制聚铝碳硅烷中的铝含量,且共混聚铝碳硅烷先驱体Si—H键含量更高.流变性能研究表明,共混获得的聚铝碳硅烷先驱体黏流活化能从255kJ/mol降至200kJ/mol,先驱体的可纺性提高,所以原纤维的平均直径从19μm降至12μm.预氧化后聚铝碳硅烷原纤维经1800℃一步烧成可得到致密的SiC(Al)纤维;XRD研究表明,纤维中的铝起到抑制碳化硅晶粒长大的作用.  相似文献   

13.
星形聚硅氧烷的热稳定性研究和结构表征   总被引:3,自引:0,他引:3  
含六苯基环三硅氮烷 (P3N)的聚硅氧烷的低温性能与普通聚硅氧烷相当 .35 0℃ ,封闭氮气中老化2 4h后 ,含P3N 聚硅氧烷的热失重比普通聚硅氧烷低 4~ 10倍 ,随聚合物含氮量增加 ,其失重呈下降趋势 ,最低失重为 1 1% .六苯基环三硅氮烷三锂盐 (P3NLi)引发环硅氧烷聚合得到的含P3N 聚硅氧烷的2 9Si NMR谱、IR谱和分子量 (GPC)与特性粘数的关系证明其具有星形结构  相似文献   

14.
Libraries of 3‐aminopropyl‐terminated poly(dimethylsiloxane) (APT–PDMS) and poly(?‐caprolactone)–poly(dimethylsiloxane)–poly(?‐caprolactone) (PCL—PDMS–PCL) triblock copolymers were synthesized. Preliminary experiments were carried out to select an appropriate catalyst and route for the poly(dimethylsiloxane) synthesis, and trial experiments were conducted to verify the successful synthesis of the intended polymer compositions. Then, a series of APT–PDMS oligomers were synthesized with an automated combinatorial high‐throughput synthesis system to cover a molecular weight range of 2500–50,000 g/mol. Trial PCL—PDMS–PCL triblock copolymers were synthesized with the automated reactor system and characterized in detail with rapid gel permeation chromatography, high‐throughput Fourier transform infrared, nuclear magnetic resonance, and differential scanning calorimetry. Finally, two library synthesis experiments were carried out in which the lengths of both the poly(dimethylsiloxane) and poly(?‐caprolactone) blocks in the PCL—PDMS–PCL triblock copolymers were varied. The results obtained from these experiments demonstrated that it was possible to synthesize libraries of well‐defined APT–PDMS oligomers and PCL—PDMS–PCL triblock copolymers with an automated high‐throughput system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4880–4894, 2006  相似文献   

15.
Analytical and Preparative Separation of Functional Carbosilanes and Phosphanes by Means of SFC (Supercritical Fluid Chromatography) Analytical and preparative separations of functional silanes, carbosilanes and phosphanes by means of SFC (supercritical fluid chromatography) using CO2 or CF3Cl as mobile phases are reported. The detecting system (an IR high pressure cell) of the apparatus which was developed by us is depicted. The separation of mixtures containing silanes with strongly polarizing groups proceeds successfully with Nucleosil-C18 and CO2 according to the molecular weights. Large differences in the polarity of the compounds give rise to a separation according to molecular weights, smaller ones to the types of compounds. The advantages of a separation by SFC are demonstrated using a mixture of 1,3,5-trisilacyclohexanes with SiH, CCl2 and SiF groups. The preparative separation is demonstrated using a mixture of 4 different groups of a toral 22 carbosilanes. Eight fractions were obtained each of which containing the compounds with the same number of Si atoms. The final separation was achieved by means of a pressure program (Nucleosil-C18, CO2). The preparative isolation of a cyclic phosphinoborane from a mixture of three components of the same type as well as the isolation of (Me3Si)3P from a mixture of P-rich silylphosphanes is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号