首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
通过水热-煅烧两步法制备了系列镍钴氧化物(NCO)纳米片。通过改变前驱体溶液中的镍、钴离子物质的量之比,进而调控NCO纳米片中的过渡金属离子比例。NCO纳米片的晶相、形貌和结构利用X射线衍射、扫描电子显微镜和X射线光电子能谱表征。此外,对NCO纳米片的电化学性能进行测试。结果表明,NCO-2(Ni1.95Co1Ox)纳米片在0.5 A·g-1电流密度下,比电容为1 096.88 F·g-1,且经过5 000次循环后具有78.26%的循环稳定性。以NCO-2为正极、活性碳为负极构成的非对称超级电容器,在功率密度为576 W·kg-1时,能量密度为57.70 Wh·kg-1。  相似文献   

2.
为探索一种高性能的锂离子电池负极材料,采用酸刻蚀法制备了高导电性、高稳定性的二维层状Ti3C2Tx,通过溶剂热法制备了具有高理论比容量的花瓣状VS2纳米片,再经过简单的液相混合得到了二维层状Ti3C2Tx-MXene@VS2复合物。通过扫描电子显微镜、透射电子显微镜、X射线光电子能谱、X射线衍射和能谱分析对复合材料的形貌和结构进行了表征,采用循环伏安、恒流充放电、长循环和交流阻抗谱对复合材料的电化学性能进行了研究。结果表明:VS2纳米片均匀地分布在Ti3C2Tx的层间及表面,该复合物具有高的可逆容量(电流密度为0.1A·g-1时,比容量为610.5mAh·g-1)、良好的倍率性能(电流密度为2A·g-1时,比容量为197.1mAh·g-1)和良好的循环稳定性(电流密度为0.2 A·g-1时,循环600圈后比容量为874.9 mAh·g-1;电流密度为2 A·g-1时,循环1 500圈后比容量为115.9mAh·g-1)。  相似文献   

3.
在水热条件下一步自组装合成系列同构X-MOF (X6O (TATB)4(H+2·(H2O)8·(DMF)2,X=Zn、Co、Ni; H3TATB=4,4'',4″-s-triazine-2,4,6-triyl-tribenzoic acid; DMF=N,N-二甲基甲酰胺)和氧化石墨烯(GO)的复合材料(X-MOF@GO),并探究其作为超级电容器电极材料的电化学性能。通过X射线粉末衍射、X射线光电子能谱和扫描电子显微镜测试证明GO和MOFs复合成功。其中,性能最优的Ni-MOFs@1.5GO (GO的添加量为1.5 mL)的比电容高达694.8 F·g-1(0.5 A·g-1),约是Ni-MOF的2倍。电化学测试结果表明:复合材料X-MOF@1.0GO较其原MOF表现出更大的比电容和更好的倍率性能。在3.5 A·g-1的电流密度下,1 000次循环充放电后,Ni-MOFs@1.0GO仍保持初始比电容量的81.2%。与活性炭(AC)组装的非对称超级电容器Ni-MOF@1.5GO//AC的性能最优,其功率密度为754.3 W·kg-1时,能量密度为15.4 Wh·kg-1,且循环3 000次后比电容保持率约为70.0%,显示出较长的循环寿命。  相似文献   

4.
本工作采用水热法结合银镜反应制备出一系列不同Ag负载量(2.2%、4.0%、6.4%,w/w)改性的3D纳米网状结构Ag@TiO2薄膜电极。利用电感耦合等离子体技术(ICP)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和X射线能谱(EDX)等表征手段测试所合成材料的形貌及成分,实验结果表明Ag纳米颗粒可以成功沉积在TiO2纳米线表面。电化学测试数据则表明,4.0%(w/w)负载量的Ag@TiO2相比于未改性和其他负载量的TiO2纳米线具有更好的倍率性能和更稳定的可逆容量。在50,100,200,400,800和1 200 mA·g-1的电流密度条件下,该改性电极的放电容量可分别达到261.4,253.7,239.5,216.5,193.1和185.1 mAh·g-1,在200 mA·g-1下循环80次后容量保持率仍能达到99.8%。  相似文献   

5.
采用溶剂热法成功制备了纳米CuFe2O4-rGO复合材料。通过X射线衍射(XRD),扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学工作站对样品的结构、形貌及电容特性进行表征。结果表明,CuFe2O4纳米粒子均匀地分散在石墨烯片层间,其中CuFe2O4-20% rGO复合材料具有最优的电化学性能,当电流密度1 A·g-1时,其比电容为1 952.5 F·g-1,当电流密度为1 A·g-1时,CuFe2O4-20% rGO复合材料经1 000次充放电后的比电容保持率为86.17%。  相似文献   

6.
采用水热法制备了0D/2D复合Ti3C2Tx MXene,利用X射线衍射、动态光散射和荧光光谱表征了其结构与形貌,结果表明形成了量子点吸附于纳米片的Ti3C2Tx复合结构(QDT)。相比未引入量子点的Ti3C2Tx,由QDT组装得到的自支撑膜电极的电化学性能有了显著提高:在三电极体系中,扫速为5 mV·s-1时,比电容为338 F·g-1,当扫速达到2 000 mV·s-1,电容保持率达到46%;在两电极体系中,0.5 A·g-1时的比电容达到216 F·g-1,10 000次循环后电容保持率为87%。以上性能可归结于:量子点提供了更多的离子吸附位点,且纳米片尺寸减小,缩短了离子传输路径。  相似文献   

7.
采用碳布(CC)为柔性基底,通过水热法制备了MnO2/CC及N掺杂MnO2/CC无黏结剂负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积测试和恒电流充放电对材料进行了结构表征及电化学性能测试。结果表明N掺杂MnO2/CC具有良好的倍率性能和循环稳定性。在0.1 A·g-1的电流密度下,其首次充电比容量为948.8 mAh·g-1,经过不同倍率测试后电流密度恢复至0.1 A·g-1时仍然保持有907.9 mAh·g-1的可逆比容量,容量保持率为95.7%。在1 A·g-1的大电流密度下,其首次充电比容量为640.3 mAh·g-1,循环100次后仍然保持有529.9 mAh·g-1的可逆比容量,容量保持率为82.8%,可逆比容量远高于商用MnO2。  相似文献   

8.
D-木糖为炭源,月桂酸钠为模板剂,硼酸为掺杂剂,通过水热炭化方法制得硼掺杂分级多孔炭球(BPCS)。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2吸附-脱附测试、X射线光电子能谱(XPS)、顺磁共振波谱(EPR)、傅里叶红外光谱(FT-IR)、拉曼光谱(Raman)、X射线粉末衍射(XRD)、热重(TG)分析对样品进行表征。结果表明:月桂酸钠作为介孔造孔剂的同时,通过与D-木糖间的氢键作用使有机-有机自组装过程自发进行并形成窄尺寸分布(2~5 μm)规整炭球;硼酸在水热中催化炭源脱水降解,并以BC3、BCO2和BC2O的形式掺杂在炭球上,掺硼后炭球与水表面接触角降低,润湿性提高。经CO2活化、月桂酸钠高温分解以及胶质炭球的堆积分别产生微孔(0.5~1.2 nm)、介孔(3.14~35.00 nm)和大孔(60~146 nm)并形成分级结构。当硼酸加入量为0.927 5 g时多孔炭球(BPCS-1)的电化学性能最佳,在6 mol·L-1 KOH三电极体系中电流密度为0.5 A·g-1时,比电容达287.12 F·g-1;两电极体系中电流密度为0.5 A·g-1时比电容达151.34 F·g-1,能量密度达5.3 Wh·kg-1;电流密度为5 A·g-1时进行1 000次充放电循环,电容保持率仍达96.43%。  相似文献   

9.
采用碳酸盐共沉淀法通过调节NH3·H2O用量来实现可控制备超高倍率纳米结构LiNi1/3Co1/3Mn1/3O2正极材料。NH3·H2O用量会对颗粒的形貌、粒径、晶体结构以及材料电化学性能产生较大的影响。X射线衍射(XRD)分析和扫描电镜(SEM)结果表明,随着NH3·H2O用量的降低,一次颗粒形貌由纳米片状逐渐过渡到纳米球状,且nNH3·H2O:(nNi+nCo+nMn)=1:2样品晶体层状结构最完善、Li+/Ni2+阳离子混排程度最低。电化学性能测试结果也证实了nNH3·H2O:(nNi+nCo+nMn)=1:2样品具有最优异的循环稳定性和超高倍率性能。具体而言,在2.7~4.3 V,1C下循环300次后的放电比容量为119 mAh·g-1,容量保持率为81%,中值电压基本无衰减(保持率为97%)。在100C(18 Ah·g-1)的超高倍率下,放电比容量还能达到56 mAh·g-1,具有应用于高功率型锂离子电池的前景。此NH3·H2O比例值对于共沉淀法制备其他高倍率、高容量的正/负极氧化物材料具有一定的工艺参考价值。  相似文献   

10.
采用氢氧化物共沉淀和熔盐法相结合的方法制备得到了电化学性能优异的富锂锰基Li1.5Ni0.25Mn0.75O2.5正极材料。借助X射线衍射(XRD)分析、扫描电镜(SEM)、感应耦合等离子体原子发射光谱(ICP-AES)、X射线光电子能谱(XPS)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的颗粒形貌、晶体结构和电化学性能进行了系统研究。XRD结果表明该材料具有完善的α-NaFeO2层状结构(空间群为R3m)和较低的Li+/Ni2+阳离子混排。电化学性能测试表明该材料的首次不可逆容量损失较小,且倍率性能和循环稳定性能十分优异。具体而言,在2.0~4.8 V,0.1C时的首次不可逆容量损失为50 mAh·g-1(首次库伦效率84%);在10C时的放电比容量还能达到102 mAh·g-1;在0.5C下循环100次后,放电比容量为205 mAh·g-1(容量保持率90%)。  相似文献   

11.
以氧化石墨烯(GO)为基底,在GO表面原位生长ZIF-67并作为模板,经硝酸镍刻蚀、碳化、水热硫化制得rGO/NiCo_2S_4复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)表征复合材料的结构与形貌。随后将rGO/NiCo_2S_4复合材料制成正极材料,测试其电化学性能,测试结果显示:rGO/NiCo_2S_4-1.5 h电极材料在1 A·g~(-1)的电流密度下,其比电容值高达1 577 F·g~(-1),当电流密度达到10 A·g~(-1)时,倍率性能为86.4%,在10 A·g~(-1)的电流密度下循环2 000次后,电容保持率为76.9%。另外,在6 mol·L-1KOH电解液中,由AC//rGO/NiCo_2S_4-1.5 h组成的不对称电容器在功率密度为723 W·kg~(-1)时,能量密度为33 Wh·kg~(-1);在高功率密度为7 277 W·kg~(-1)时,能量密度仍保持为23 Wh·kg~(-1)。  相似文献   

12.
采用电化学沉积在碳纳米管纤维上复合锌钴氢氧化物纳米片(CNTF@ZnCo-OH),并研究其电化学性能。实验结果表明CNTF@ZnCo-OH电极在2 A·g-1的电流密度下比电容为748 F·g-1,在10 A·g-1的电流密度下循环2 000圈以后,比电容保持率高达110.4%。该优异循环性能得益于碳纳米管纤维基底的网络结构和ZnCo-OH的纳米片状结构。以CNTF@RGO(石墨烯)为负极、CNTF@ZnCo-OH为正极,组装线状全固态非对称CNTF@ZnCo-OH//CNTF@RGO超级电容器。该器件在0.5 A·g-1电流密度下比电容为70 F·g-1,2 000次循环后电容保持率为79.6%,并且在不同的弯曲状态下保持电化学性能不变,具有优良的机械稳定性。该非对称线状器件可以在0.8~1.4 V之间工作,其能量密度高达19.1 Wh·kg-1,对应的功率密度为1 400.3 W·kg-1。2个30 mm长的线状器件可持续点亮LED灯10 s。  相似文献   

13.
以泡沫镍作为基底,采用水热法原位生长出具有片状结构的NiMoO4活性材料,然后通过水热硫化制备出NiMoO4/NiMoS4复合材料,研究了水热时间和硫脲添加量对样品形貌和电化学性能的影响。电化学结果表明,NiMoO4/NiMoS4电极在电流密度为 1 A·g-1时,比电容为 1 560.7 F·g-1,在电流密度为 40 A·g-1时循环 2 000次后,比电容仍为初始比电容的 76.7%。将 NiMoO4/NiMoS4电极材料与活性炭(AC)分别作为正、负极组装的非对称超级电容器(ASC)在 400 W·kg-1的功率密度下可提供 29.0 Wh·kg-1的能量密度。  相似文献   

14.
以泡沫镍作为基底,采用水热法原位生长出具有片状结构的NiMoO4活性材料,然后通过水热硫化制备出NiMoO4/NiMoS4复合材料,研究了水热时间和硫脲添加量对样品形貌和电化学性能的影响。电化学结果表明,NiMoO4/NiMoS4电极在电流密度为1A·g-1时,比电容为1560.7F·g-1,在电流密度为40A·g-1时循环2000次后,比电容仍为初始比电容的76.7%。将NiMoO4/NiMoS4电极材料与活性炭(AC)分别作为正、负极组装的非对称超级电容器(ASC)在400W·kg-1的功率密度下可提供29.0Wh·kg-1的能量密度。  相似文献   

15.
首先采用溶液法在碳布上生长Co-MOF二维纳米片,通过高温退火和刻蚀后得到MOF衍生多孔碳纳米片。以Co-MOF衍生的多孔碳纳米片/碳布(CNS/CC)作为碳基骨架,采用电化学沉积法负载高活性氮掺杂石墨烯量子点(N-GQDs),制备得到分级多孔结构的N-GQD/CNS/CC复合材料。组装成自支撑且无粘结剂的N-GQD/CNS/CC电极,当电流密度为1 A·g~(-1)时,其比电容高达423 F·g~(-1)。通过储能机制和电容贡献机制的研究表明,在碳纤维上原位生长的具有高双电层电容的CNS和表面负载具有高赝电容的N-GQDs之间相互协同作用,使得N-GQD/CNS/CC电极具有高电容性能,是一种理想的超级电容器电极材料。电极材料的高导电、分级多孔结构有利于电子的传输和电解质离子的扩散,具有良好的动力学性能,能快速充放电和具有优异的倍率特性。将电极组装成对称型超级电容器,功率密度为250 W·kg~(-1)时对应的能量密度达到7.9 Wh·kg~(-1),且经过10 000次循环后电容保持率为91.2%,说明氮掺杂石墨烯量子点/MOF衍生多孔碳纳米片复合材料是一种电化学性能稳定的具有高电容性能的全碳电极材料。  相似文献   

16.
利用水热法一步合成了不同镍、钴元素比例的镍钴铝层状氢氧化物(NiCoAl LDH),并探究了不同Ni元素含量的NiCoAl LDH的电化学性能,在Ni和Co的物质的量之比为3:7时,Ni_(0.3)CoAl LDH具有最优电化学性能。晶格中部分Ni元素被Co元素代替有利于降低氧化电势,提高材料的化学可逆性。然后通过水热法将CNT与Ni_(0.3)CoAl LDH复合,CNT的复合提高了材料的导电性。CNT/Ni_(0.3)CoAl LDH在1 A·g~(-1)的电流密度下比容量为1 332 F·g~(-1),电流密度为10 A·g~(-1)时比容量保持率为60.4%。在5A·g~(-1)的电流密度下循环3 000圈容量保持率为87.6%。  相似文献   

17.
采用水热和低温磷化反应两步法,在无添加沉淀剂条件下成功在泡沫镍上合成纳米花状镍钴磷化物(NiCoP/NF)。研究结果表明,镍/钴元素物质的量之比为1∶1时,在1 A·g~(-1)电流密度下,Ni_(1/2)Co_(1/2)P/NF的比容量高达1 276.36 F·g~(-1),在10 A·g~(-1)电流密度下充放电循环3 000次后,比容量保持率为78.23%。此外,以Ni_(1/2)Co_(1/2)P/NF为正极,活性炭(AC)为负极组装的非对称超级电容器(Ni_(1/2)Co_(1/2)P/NF//AC/NF)在725 W·kg~(-1)的功率密度下,能量密度高达36.25 Wh·kg~(-1)。  相似文献   

18.
通过恒电压电沉积法在不同的碳纤维基体上原位制备NiCo层状双金属氢氧化物(NiCo-LDH)复合材料(NiCo-LDH/碳纤维布),该方法无需粘合剂,可以有效避免由于粘合剂的加入引起的导电性降低。在NiCo-LDH的层状晶体结构中,正电荷的主体层和层间电荷补偿阴离子可以促进电极材料之间的离子扩散,从而可高效利用活性位点。得益于NiCo-LDH折叠层状结构的特点,NiCo-LDH/碳纤维布具有出色的比电容(1 A·g-1时1387.5 F·g-1)。此外,以NiCo-LDH/碳纤维布作为正极,涂覆在泡沫镍表面的还原氧化石墨烯(rGO/NF)作为负极,组装而成的非对称超级电容器(ASC)具有极好的电化学性能。ASC在1 A·g-1时能量密度为26.6 Wh·kg-1,功率密度为850.4 W·kg-1,在最大功率密度为8500.3 W·kg-1时能量密度仍保持有14.9 Wh·kg-1。  相似文献   

19.
通过两步法先在泡沫镍(nickel foam,NF)上原位生长Co金属有机骨架(Co metal-organic framework,Co-MOF)纳米片阵列,再浸入不同浓度Ni2+离子溶液刻蚀Co-MOF纳米片,在NF表面得到NiCo水滑石(NiCo layered double hydroxide,NiCo-LDH)。NiCo-LDH/NF继承了Co-MOF纳米片结构形成一级纳米片阵列,并在一级纳米片表面形成次级纳米片褶皱。在2 mmol Ni(NO3)2·6H2O溶液中刻蚀得到的NiCo-LDH/NF表现出高容量、高倍率性能,在电流密度为5 mA·cm-2时比电容为7 764.5 mF·cm-2,电流密度为20 mA·cm-2时比电容为6 098.2 mF·cm-2,容量保持率为78.5%,在20 A·g-1电流密度下经过5 000次长循环后,容量保持率为85.9%。与活性炭组装的混合...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号