首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用基于密度泛函理论的第一性原理分析方法的CASTEP软件,计算了Ni、C单掺杂和共掺杂SnO2的晶格参数、能带结构、电子态密度和布局,结果表明:单掺杂和共掺杂均使得晶胞体积略微增大,禁带减小,且仍属于直接带隙半导体,在价带顶和导带底产生杂质能级,其中Ni-C共掺杂时禁带最小,杂质能级最多,电子跃迁需要的能量更小,导电性也就最好.共掺杂时费米能级附近的峰值有所减小,局域性降低,原子间的成键结合力更强,使得SnO2材料也更加稳定.  相似文献   

2.
逯瑶  王培吉  张昌文  蒋雷  张国莲  宋朋 《物理学报》2011,60(6):63103-063103
采用全电势线性缀加平面波(FP-LAPW)的方法,基于密度泛函理论第一性原理结合广义梯度近似(GGA),运用Wien2k软件计算了In, N两种元素共掺杂SnO2材料的电子态密度和光学性质. 研究表明,共掺杂结构在自旋向下和向上两方向上都出现细的局域能级,两者态密度分布不对称;带隙内自旋向下方向上产生局域能级,共掺化合物表现出半金属性;能带结构显示两种共掺杂化合物仍为直接禁带半导体,价带顶随着N浓度的增加发生向低能方向移动,带隙明显增宽;共掺下的介电函数虚部主介电峰只在8.58 eV 关键词: 电子结构 态密度 能带结构 光学性质  相似文献   

3.
冯庆  王寅  王渭华  岳远霞 《计算物理》2012,29(4):593-600
采用基于第一性原理的平面波超软赝势方法研究N和S单掺杂以及N和S共掺杂金红石相TiO2的能带结构,态密度和光学性质.结果表明:N掺杂导致禁带宽度减小为1.43 eV,并且在价带上方形成了一条杂质能带;S掺杂导致费米能级上移靠近导带,直接带隙减小为0.32 eV;N和S共掺杂导致能带结构中出现了两条杂质能带,靠近导带的一条杂质能级距离导带底约0.35 eV,靠近价带的一条杂质能级距离价带顶约0.85 eV,杂质能级主要由N原子的2p轨道和S原子的3p轨道组成.N和S掺杂后不但使TiO2的吸收带产生红移,而且在可见光区具有较大的吸收系数,光催化活性增强.  相似文献   

4.
于峰  王培吉  张昌文 《物理学报》2011,60(2):23101-023101
采用基于第一性原理的线性缀加平面波方法(FP-LAPW),研究Al掺杂SnO2材料Sn1-xAlxO2 (x= 0,0.0625,0.125,0.1875,0.25)的电子结 构和光学性质,包括能带结构、电子态密度、介电函数和其他一些光学性质.计算结果表明,掺杂Al之后价带上部分折叠态增加,价带宽度发生收缩,对导带底起作用的Sn 5s态减少,使得带隙增宽,且态密度整体向高能方向发生移动.随着Al掺杂量的增加带隙越来越宽,Al杂质能级在导带部分与Sn 5p态电子相互作用逐渐增强,虚部谱中的第一介电峰的强度随掺杂Al浓度增大而减弱.同时,吸收谱及其他光学谱线与介电函数虚部谱线相对应,各谱线均发生蓝移现象,对应带隙增宽,从理论上指出了光学性质与电子结构之间的内在关系. 关键词: 能带结构 态密度 光学性质 介电函数  相似文献   

5.
采用密度泛函理论广义梯度近似第一性原理计算的方法研究了n型Ga掺杂的纤锌矿结构氧化物ZnO的晶格结构、能带结构和态密度,在此基础上分析了其电性能.计算结果表明,掺杂ZnO氧化物晶格a,b轴增大,c轴略有减小;Ga掺杂ZnO氧化物两能带之间具有0.6eV的直接带隙,需要载流子(电子)跃迁的能隙宽度较未掺杂的ZnO氧化物减小;掺杂体系费米能级附近的态密度大大提高,其能带主要由Gas态、Zns态和Os态电子构成,且他们之间存在着强相互作用,其中Gas态电子对导带贡献最大.电输运性能分析结果表明,Ga掺杂ZnO氧化物导电机构由Znp-Op电子在价带与导带的跃迁转变为Gas-Znd-Os电子在价带与导带的跃迁,这也表明Gas态电子在导电过程中的重要作用;掺杂体系费米能级附近的载流子有效质量较未掺杂体系增大,且价带中的载流子有效质量较大,导带中的载流子有效质量较小.  相似文献   

6.
采用基于密度泛函理论的第一性原理计算方法,构建了Sm、Sb及Sm和Sb共掺杂SnO2超晶胞模型,研究了经过几何优化后的各掺杂体系的焓变值、能带结构、态密度、电荷布居、介电常数、吸收系数、反射率等光电性质.结果表明:Sm和Sb的掺杂可以有效地提升SnO2的导电性能,且Sb和Sm共掺杂体系的电学性能最佳. Sm和Sb掺杂还可以增加SnO2在红外波段的电子极化能力和电子跃迁概率,提升了红外反射率,且共掺杂体系的电子束缚能力最强、反射率最高.这为SnO2基光电材料的研制提供了一定的理论依据.  相似文献   

7.
采用密度泛函理论框架下的第一性原理计算方法,利用广义梯度近似和Perdew-Burke-Ernzerdorf泛函,计算了不同Sn掺杂浓度下SZO(Sn∶ZnO)体系的电子结构与光学性质.研究了Sn掺杂浓度对SZO(Sn∶ZnO)的晶体结构、能带结构、电子态密度及光学性质的影响,并结合计算的能带结构和差分电荷密度对比分析了掺杂位置对计算结果的影响.研究结果表明,随着Sn掺杂浓度的增加,晶格常数c与a的比值变化很小,掺杂后晶胞没有发生畸变.掺杂体系的能量逐渐增大,稳定性减弱,且随着掺杂浓度的增加,带隙呈现先减小后增大的变化规律.掺杂后的SZO(Sn∶ZnO)成为间接带隙半导体,在导带底部附近出现了大量Sn原子贡献的导电载流子,明显提高了掺杂体系的电导率,并在费米能级附近与价带顶部之间出现一条由Sn原子贡献的杂质能级,能带结构呈现半填满状态,价带部分的电子态密度峰值向低能方向移动约1.5eV.同层掺杂的电子得失程度较大,带隙比相邻层掺杂和隔层掺杂时小.掺杂后吸收带边发生红移,材料对紫外光的吸收能力明显增强,介电常数虚部增大,主要跃迁峰向高能方向移动.计算结果表明SZO(Sn∶ZnO)是一种优良的透明导电薄膜材料.  相似文献   

8.
基于密度泛函理论,采用第一性原理赝势平面波方法计算了Co、Cr单掺杂以及Co-Cr共掺杂金红石型TiO2的能带结构、态密度和光学性质.计算结果表明:纯金红石的禁带宽度为3.0eV,Co掺杂金红石型TiO2的带隙为1.21eV,导带顶和价带底都位于G点处,仍为直接带隙,在价带与导带之间出现了由Co 3d和Ti 3d轨道杂化形成的杂质能级;Cr掺杂金红石型TiO2的直接带隙为0.85eV,在价带与导带之间的杂质能级由Cr 3d和Ti 3d轨道杂化轨道构成,导带和价带都向低能级方向移动;Co-Cr共掺杂,由于电子的强烈杂化,使O-2p态和Ti-3d态向Co-3d和Cr-3d态移动,使价带顶能级向高能级移动而导带底能级向低能方向移动,极大地减小了禁带的宽度,也是共掺杂改性的离子选择依据.掺杂金红石型TiO2的介电峰、折射率和吸收系数峰都向低能方向移动;在E2.029eV的范围内,纯金红石的ε2、k和吸收系数为零,掺杂后的跃迁强度都大于未掺杂时的跃迁强度,Co-Cr共掺杂的跃迁强度大于Co掺杂及Cr掺杂,说明Co、Cr共掺杂更能增强电子在低能端的光学跃迁,具有更佳的可见光催化性能.  相似文献   

9.
张睿智  王春雷  李吉超  梅良模 《物理学报》2009,58(10):7162-7167
以Bi和Cu掺杂为例,通过基于密度泛函理论的电子结构的计算,分析了SrTiO3体系中形成级联能级的可能性.结果表明,Bi掺杂和Cu掺杂都可以在SrTiO3的禁带中引入杂质能带,Bi和Cu的共同掺杂可引入两条杂质能带.通过在两条杂质能带之间级联激发,价带顶的电子可以受激跃迁到导带底.采用无辐射跃迁的简单模型,分析指出电子通过级联激发从价带顶受激跃迁到导带底的概率远远高于直接从价带顶跃迁到导带底的概率.这种级联激发可以有效提高导带中的载流子浓度. 关键词: 级联能级 密度泛函 掺杂  相似文献   

10.
SrSnO3是一种钙钛矿结构的宽带隙半导体,透明性高、无毒且价格低廉,是一种有前景的透明导电氧化物的候选者.本文通过第一性原理计算,获得了SrSnO3的电子结构,着重讨论了SrSnO3的本征缺陷、外界元素掺杂的缺陷形成能及过渡能级,筛选出适宜的掺杂元素并指出了对应的实验制备环境,进一步根据带边能量位置对其电导性能机制进行了探讨.计算结果表明,SrSnO3是一种基础带隙为3.55 eV、光学带隙为4.10 eV的间接带隙半导体,具有良好的透明性,电子的有效质量轻,利于n型电导.在富金属贫氧条件下,As,Sb掺杂SrSnO3可以提升n型电导率;SrSnO3的价带顶位于-7.5 eV处,导带底位于-4.0 eV处,其价带顶和导带底的能量位置均相对较低,解释了其易于n型掺杂而难于p型掺杂,符合宽带隙半导体材料的掺杂规律,最后,Sb掺杂SrSnO3被提出为有前景的廉价n型透明导电材料.  相似文献   

11.
冯秋菊  刘洋  潘德柱  杨毓琪  刘佳媛  梅艺赢  梁红伟 《物理学报》2015,64(24):248101-248101
采用化学气相沉积方法, 利用Sb2O3/SnO作为源材料, 在蓝宝石衬底上制备出不同Sb掺杂量的SnO2薄膜, 并在此基础上制作出p-SnO2:Sb/n-SnO2同质p-n 结器件. 研究表明, 随着Sb含量的增加, 样品表面变得平滑, 晶粒尺寸逐渐增大, 且晶体质量有所改善, 发现少量Sb的掺入可以起到表面活化剂的作用. Hall测量结果证实适量Sb的掺杂可以使SnO2呈现p型导电特性, 当Sb2O3/SnO的质量比为1:5时, 其电学参数为最佳值. 此外, p-SnO2:Sb/n-SnO2同质p-n结器件展现出良好的整流特性, 其正向开启电压为3.4 V.  相似文献   

12.
The changes in the empty electronic states in SnO2 produced by ion-beam induced oxygen deficiency and by Sb doping have been studied by inverse photoemission spectroscopy. Inverse photoemission in SnO2 itself is dominated by peaks 4 and 12 eV above the Fermi level, the former associated with empty states of dominant Sn 5p atomic character. Sb doping populates states in the Sn 5s conduction band, shifting the empty state structure closer to the Fermi energy. By contrast oxygen deficiency introduces new states above the main Sn 5p peak. These are tentatively described as 5s-5p hybrids pushed up in energy from the 5p band by mixing between atomic orbitais of different parity in the non-centrosymmetric cation environment of oxygen deficient SnO2.  相似文献   

13.
Rutile germanium oxide (rutile GeO2), a semiconductor, can act as a half-metallic compound and is a promising material for spintronic and optoelectronic applications. Calculations were performed using the Korringa–Kohn–Rostoker (KKR) approach and the coherent potential approximation (CPA), which were further combined with two approximations, the local density approximation (LDA) and the self-interaction corrected LDA approximation (LDA-SIC), to study the electronic structure of bulk rutile GeO2 doped and co-doped with three transition-metal impurities: Fe, Co, and Ni. The doping value was set to 10%, while the co-doping level was set to 5% for each impurity. The main findings of this work are: (1) a direct ultrawide bandgap of 4.80 eV is observed and the rutile GeO2 exhibits an N-type semiconducting property. (2) Doped and co-doped GeO2 acquire a magnetic behavior and exhibit half-metallicity. (3) The mechanism responsible for these properties is also studied. (4) The critical temperature can reach 334 K when GeO2 is doped with Fe, while it rises to 398 K when it is co-doped with Fe and Co. (5) The spin polarization can be improved by co-doping. It can be inferred that rutile GeO2 doped or co-doped with (Co, Fe) transition metals can be considered to be potential candidates for spintronic and optoelectronic applications.  相似文献   

14.
采用基于密度泛函理论的第一性原理平面波超软赝势方法,结合广义梯度(GGA)近似对Cr单掺AlN和Cu-Cr共掺AlN的32原子超原胞体系进行几何结构优化,计算它们的晶格常数,能带结构,电子态密度以及光学性质.结果表明Cr单掺AlN和Cu-Cr共掺AlN均表现为半金属性质,带隙变窄,且Cu-Cr共掺体系自旋极化作用较Cr单掺强,材料表现出良好的铁磁性.共掺杂后,光吸收的范围增宽,体系对长波吸收加强,能量损失明显减小.  相似文献   

15.
This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 crystal. When one and two N atoms are introduced into the Sb2Se3 lattice at Sb sites, the electronic structure shows that the doping significantly modifies the bandgap of Sb2Se3 from 1.11 eV to 0.787 and 0.685 eV, respectively. When N atoms are introduced to Se sites, the material shows a metallic behavior. The static dielectric constants ε1(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 14.84, 15.54, 15.02, 18.9, and 39.29, respectively. The calculated values of the refractive index n(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 3.83, 3.92, 3.86, 4.33, and 6.21, respectively. The optical absorbance and optical conductivity curves of the crystal for N-doping at Sb sites show a significant redshift towards the short-wave infrared spectral region as compared to N-doping at Se sites. The modulation of the static refractive index and static dielectric constant is mainly dependent on the doping level. The optical properties and bandgap narrowing effect suggest that the N-doped Sb2Se3is a promising new semiconductor and can be a replacement for GaSb due to its very similar bandgap and low cost.  相似文献   

16.
作为一种稳定性好、抗辐射能力强、原材料丰富的宽禁带半导体, ZnO在光催化的研究领域中成为热点材料,但是其仅能吸收可见光中的紫光,因此如何扩大ZnO对可见光的响应范围是一个值得研究的问题.掺杂改性是解决这个问题的常用方法.基于以上考量,本文应用第一性原理计算方法研究了N与Pr掺杂对ZnO的电子结构和光学性质的影响.研究结果表明:共掺体系比单掺体系更容易形成,且共掺体系的稳定性随Pr浓度的增加先增强后变弱;同一体系的最短Zn—O键与最长Zn—O键的布居数比例随杂质浓度的增大先增大后减小,说明杂质的掺入对体系的晶格畸变有很大的影响,有利于光生空穴-电子对的分离,从而提高材料的光催化活性. N 2p态与Pr 4f态发生杂化对晶体的完整性产生了破坏,在杂质原子周围形成晶场,造成能级劈裂,带隙减小;介电函数虚部的主峰位均向低能区域移动,吸收光谱中各掺杂体系发生红移,各共掺体系随着杂质原子Pr浓度的增加,在可见光区的响应范围依次扩大,吸收能力也依次增加,说明N与Pr的共掺杂对提高ZnO的光催化性是有利的.  相似文献   

17.
采用基于密度泛函理论的第一性原理赝势平面波方法,对稀土元素La,Y单掺杂和La和Y共掺杂GaN的晶格常数、电子结构及光学性质进行了计算与分析.计算结果表明:掺杂改变了GaN的能带结构,未掺杂和Y掺杂形成导带底和价带顶位于G点的直接带隙半导体,而La掺杂和La和Y共掺杂形成导带底位于G点,价带顶位于Q点的间接带隙半导体.可以通过掺杂元素来调制GaN的禁带宽度和带隙类型,掺杂均提高GaN在低能区的静态介电常数、反射率、折射率,使光子的跃迁强度增大,说明稀土元素La,Y掺杂可有效调制GaN的光电性质.  相似文献   

18.
陈亚琦  许华慨  唐东升  余芳  雷乐  欧阳钢 《物理学报》2018,67(24):246801-246801
为探究常态环境下氧空位对单根SnO_2纳米线电输运性能的影响,采用化学气相沉积法合成了SnO_2纳米线,通过光刻微加工技术构筑了Au/单根SnO_2纳米线/Au二端纳米器件.将单根SnO_2纳米器件进行氢化处理,测试其在空气与真空中的伏安特性曲线,发现单根SnO_2纳米线在空气和真空环境中呈现异常不同的电输运特性:在空气中,加偏压注入电子会使通过纳米器件的电流减小,Au电极与SnO_2纳米线之间的接触势垒增大;抽真空后,在偏压的影响下,通过纳米器件的电流增大,Au/SnO_2交界面的接触方式由肖特基接触转变成欧姆接触.实验分析表明,影响单根SnO_2纳米线电输运特性行为的因素与纳米线表面的氧原子吸附与脱吸附所引起的氧空位浓度的变化有关.为进一步分析氧空位浓度变化的作用,利用第一性原理计算方法计算了氧空位浓度对SnO_2纳米线电输运性能的影响,通过分析体系的能带结构、态密度及Au/SnO_2接触界面的I-V曲线和透射谱,发现随着氧空位浓度的增大,SnO_2纳米线的带隙变小.同时,氧空位缺陷使Au/SnO_2接触界面处电子透射率增大,体系电输运能力变强.该研究结果将为集成纳米功能器件的设计提供一种新思路.  相似文献   

19.
赵佰强  张耘  邱晓燕  王学维 《物理学报》2016,65(1):14212-014212
利用基于密度泛函理论的第一性原理对Cu,Fe单掺及共掺LiNbO_3晶体的电子结构和光学性质进行了计算.结果显示:Cu,Fe单掺杂LiNbO_3晶体禁带内均产生了杂质能级,主要由Cu3d,Fe3d轨道及O 2p轨道贡献;共掺LiNbO_3晶体禁带内出现了双能级结构,深能级由Cu3d和O2p轨道贡献,浅能级由Fe3d和O2p轨道贡献.Cu,Fe单掺和共掺LiNbO_3晶体带隙依次缩小,在可见光区的光吸收明显增强.共掺LiNbO_3在445和630nm左右分别表现出一个宽吸收峰,比单掺LiNbO_3晶体表现出更好的光吸收性质.研究表明,Fe占Nb位比Fe占Li位的双掺样品在双光存储应用中更有优势;同时,浓度比[Fe2+]/[Fe3+]值的适当降低有助于这种优势的形成.  相似文献   

20.
侯清玉  曲灵丰  赵春旺 《物理学报》2016,65(5):57401-057401
与本文相近的Al-2N掺杂量的范围内, 对ZnO掺杂体系吸收光谱分布红移和蓝移两种实验结果均有文献报道, 但是, 迄今为止对吸收光谱分布尚未有合理的理论解释. 为了解决该问题, 本文采用基于密度泛函理论的广义梯度近似 平面波超软赝势方法, 用第一性原理构建了两种不同掺杂量的Zn0.98148Al0.01852O0.96296N0.03704和Zn0.96875Al0.03125O0.9375N0.0625超胞模型. 在几何结构优化的基础上, 对模型能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明, 在本文限定的掺杂量范围内, Al-2N掺杂量越增加, 掺杂体系的体积越减小, 体系总能量越升高, 体系稳定性越下降, 形成能越升高, 掺杂越难; 所有掺杂体系均转化为简并p型化半导体, 掺杂体系最小光学带隙均变窄,吸收光谱均发生红移; 同时发现掺杂量越增加, 掺杂体系最小光学带隙变窄越减弱, 吸收光谱红移越减弱. 研究表明: 要想实现Al-2N共掺在ZnO中最小光学带隙变窄、掺杂体系发生红移现象, 除了限制掺杂量外, 尺度长短也应限制; 其次, Al-2N掺杂量越增加,掺杂体系空穴的有效质量、浓度、 迁移率、电导率越减小,掺杂体系导电性能越减弱. 计算结果与实验结果的变化趋势相符合. 研究表明, Al-2N共掺在ZnO中获得的新型半导体材料可以用作低温端的温差发电功能材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号