首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   14篇
  国内免费   5篇
化学   5篇
晶体学   2篇
物理学   18篇
  2022年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2005年   1篇
排序方式: 共有25条查询结果,搜索用时 17 毫秒
1.
采用密度泛函理论平面波超软赝势方法研究了p型Li掺杂的纤锌矿结构ZnO的能带结构、态密度和电荷分布,并分析了Li掺杂ZnO的电输运性能.结果表明,Li掺杂ZnO具有1.6eV的直接带隙,且为p型半导体,体系费米能级附近的态密度大大提高,在导带和价带中都出现了由Li电子能级形成的能带,其费米能级附近的能带主要由Li的s态、Zn的p态、Zn的d态和O的p态电子构成,且他们之间存在着强相互作用.电输运参数和电输运性能分析结果表明,Li掺杂的ZnO氧化物价带和导带中的载流子有效质量均较大;其载流子输运主要由Li的s态、Zn的p态和O的p态电子完成;Li掺杂有望改善ZnO的电输运性能.  相似文献   
2.
基于密度泛函理论广义梯度近似第一性原理计算的方法,系统研究了Ca掺杂ZnO氧化物的晶格结构和电子结构,在此基础上分析了其电学性能。结果表明,Ca掺杂ZnO晶胞减小。Ca掺杂氧化物仍为直接带隙半导体材料,带宽达1.5 eV。掺杂体系费米能级附近的能带主要由Cas态、Cap态、Znp态和Op态电子构成,其中p态电子对价带态贡献最大,且Cas态、Znp态和Op态电子之间存在着更强的相互作用。Ca掺杂ZnO氧化物费米能级EF附近载流子浓度增加,运动速度减小,有效质量增加,导电机构为Cas态、Znp态和Op态电子在价带与导带的跃迁,具有更高的电导率,较高的Seebeck系数和综合电性能。  相似文献   
3.
张忻  李佳  路清梅  张久兴  刘燕琴 《物理学报》2008,57(7):4466-4470
采用机械合金化制备了n型(Bi1-xAgx)2(Te1-ySey)3合金粉体,对其进行XRD分析表明Bi,Te,Ag,Se单质粉末,经2h球磨后实现了合金化;SEM分析表明随着机械合金化时间延长粉体颗粒变得均匀、细小,颗粒尺寸在微米至亚微米数量级.采用放电等离子烧结制备了块体样品,研究了合金成分和球磨时间对热电性能的影响.结果表明材料的热电性能与掺杂元素有密切关系,Ag有利于提高功率因子和降低晶格热导率,球磨10h的(Bi0.99Ag0.01)2(Te0.96Se0.04)3合金粉末的烧结块体具有最大的功率因子和最低的晶格热导率,并在323K取得最高ZT值0.52. 关键词: 1-xAgx)2(Te1-ySey)3合金')" href="#">(Bi1-xAgx)2(Te1-ySey)3合金 机械合金化 放电等离子烧结 热电性能  相似文献   
4.
基于密度泛函理论从头计算法,研究了500GPa外压力条件下纤锌矿结构ZnO氧化物的晶格结构、电子结构、光学性质和导电性能。计算分析结果表明,在500GPa外压力下,ZnO氧化物的晶格对称性保持不变,晶格参数减小,Zn—O键长和O—Zn—O键角均减小,但不同方向上材料的可压缩性不同;ZnO氧化物的带隙类型仍为直接带隙,其宽度增加到1.65eV;费米能级附近的能级数量减少,态密度降低,电子在不同能量区域的局域化趋势明显;ZnO氧化物的光吸收向高能量范围扩展,低能量光学吸收降低,高能量光吸收增强。分析结果表明,500GPa的外压力下,ZnO氧化物费米能级附近的载流子浓度、有效质量和迁移速率均降低,其电性能降低。  相似文献   
5.
采用溶胶-凝胶和无压烧结的方法制备了Yb掺杂的钙钛矿型Ca1-xYbxMnO3(x=0~0.2)系列固溶体,并结合X射线R ietveld精修、扫描电子显微镜及热电性能测试,系统研究了Yb掺杂量对产物相组成、晶体结构、显微结构和热电性能的影响。结果表明,Yb的掺杂引起了CaMnO3的晶格畸变,导致Mn-O2-Mn键角(氧八面体在水平方向的扭转)随着Yb的增加而减小;Yb的掺杂大幅度降低了样品的电阻率,并改变了电传输特性:Seebeck系数绝对值显著降低,同时随着掺杂量的增加,进一步减小。Yb的掺杂明显抑制了晶粒长大,此外,其重原子特性和少量第二相的生成显著降低了材料的热导率。其中x=0.1的样品Ca0.9Yb0.1MnO3在T=700℃时,ZT值达到0.093,较单相的CaMnO3提高了120%。  相似文献   
6.
本文以CeH2,PrH2纳米粉和B粉为原料,在无氧环境下采用放电等离子原位反应成功制备了单相多元稀土六硼化物Pr1-xCexB6=(x=0.2—0.8)阴极材料.系统研究了掺杂元素Ce对Pr1-xCexB6的物相组成、力学性能及热电子发射性能的影响.结果表明,当烧结温度为1450℃,烧结压强为50MPa时可制得单相的Pr1-xCexB6多晶块体材料并且该系列样品具有良好的力学性能,维氏硬度和抗弯强度最高值分别达到了24.34GPa和226.02MPa,已达到单晶水平.热电子发射性能结果表明,随着Ce掺杂量的增加Pr1-xCexB6的发射电流密度线性增加.当阴极温度为1973K,外加电压为950V时,Pr0.4Ce0.686最大发射电流密度达到47-3A.cm^-2,该值远高于传统热压烧结法制备的发射电流密度.因此,本文该方法制备的Pr1-xCexB6多晶块体具有良好的力学性能和发射性能,作为热阴极材料将会有很好的应用前景.  相似文献   
7.
包黎红  那仁格日乐  特古斯  张忻  张久兴 《物理学报》2013,62(19):196105-196105
以LaH2, CeH2纳米粉和无定形B粉为原料, 通过放电等离子烧结原位合成法制备了单相、高致密度的LaxCe1-xB6稀土六硼化物. 系统研究了该系列化合物的晶体结构、表面织构、力学性能、电输运特性及热发射性能. 结果表明, 该方法制备出的样品致密度均高于96%, 维氏硬度最高值达到2310 kg/mm2, 说明具有良好的力学性能. 热发射结果表明, 当阴极温度为1873 K, 外加电压为1 kV时, La0.6Ce0.4B6的最大发射电流密度达到40.7 A/cm2, 该值高于单纯LaB6和CeB6电流密度值. 因此, LaxCe1-xB6多元稀土六硼化物作为热阴极材料将有良好的应用前景. 关键词: 稀土六硼化物 阴极材料 热电子发射  相似文献   
8.
采用超软赝势密度泛函理论计算的方法研究了Mg掺杂Ca位CaMnO_3基复合氧化物的能带结构、电子态密度和电荷分布状况,在此基础上分析了Mg掺杂氧化物的电性能。结果表明,Mg掺杂CaMnO_3氧化物仍然呈间接带隙型能带结构,带隙宽度由0.756 e V减小到0.734 e V。CaMnO_3氧化物和Mg掺杂CaMnO_3氧化物的自旋态密度曲线极值点均位于为-0.8 e V附近。Mg掺杂CaMnO_3氧化物中Mn原子对体系费米面态密度的贡献有所减小,O原子和Ca原子对体系费米面态密度的贡献有所增大。Mg原子比Ca原子具有更强的释放电子的能力,Mg掺杂对于CaMnO_3氧化物属于电子型掺杂。Mg掺杂CaMnO_3氧化物导电性能增强,电性能提高。  相似文献   
9.
采用柠檬酸溶胶-凝胶结合放电等离子烧结方法制备了p型Ca位掺杂的Ca2.9M0.1Co4O9(M=Ag,La,Ba)复合氧化物块体试样,对其进行X射线衍射(XRD)分析,表明产物为单一物相,Ca位掺杂原子可以改变Ca2.9Co4O9多晶体的取向度,掺杂试样取向度随着掺杂原子电负性的降低而提高;对其进行扫描电子显微镜(SEM)分析结果表明,试样呈层状结构,且层状结构随掺杂原子电负性降低而逐渐明显;电性能分析结果表明,测试温度范围内掺杂试样各温度点的电阻率随着掺杂原子电负性的降低而升高,所有试样的载流子传输层未受影响,导电机理未发生变化.其中掺杂电负性最高的Ag原子的烧结体保持最低取向度的同时具有最低的电阻率,在973 K时达6.87 mΩ·cm,而掺杂电负性最低的Ba原子的烧结体具有高的取向度的同时具有较高的电阻率,在973 K时达8.22 mΩ·cm.  相似文献   
10.
采用惰性气体保护蒸发-冷凝法制备了纳米Bi及Te粉末, 结合机械合金化和放电等离子烧结技术, 在不同烧结温度下制备出了单一物相且具有纳米层状结构及孪晶亚结构的n型Bi2Te3块体材料, 并系统研究了块体材料的晶粒尺度、微结构及其对电热传输特性的影响. SEM, TEM分析结果表明, 以纳米粉末为原料, 通过有效控制工艺条件, 可以制备出具有纳米层状结构Bi2Te3合金块体材料, 同时纳米层状结构中存在孪晶亚结构; 热电性能测试结果表明, 具有纳米层状结构及孪晶亚结构的块体试样与粗晶材料相比, 热导率大幅度降低, 在423 K附近, 热导率由粗晶材料的1.80 W/mK降至1.19 W/mK, 晶格热导率从1.16 W/mK降至0.61 W/mK, 表明纳米层状结构与孪晶亚结构共存, 有利于进一步提高声子散射, 降低晶格热导率. 其中在693 K放电等离子烧结后的试样于423K附近取得最大值的无量纲热电优值(ZT), 达到0.74.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号