首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An efficient numerical approach for the general thermomechanical problems was developed and it was tested for a two-dimensional thermoelasticity problem. The main idea of our numerical method is based on the reduction procedure of the original system of PDEs describing coupled thermomechanical behavior to a system of Differential Algebraic Equations (DAEs) where the stress-strain relationships are treated as algebraic equations. The resulting system of DAEs was then solved with a Backward Differentiation Formula (BDF) using a fully implicit algorithm. The described procedure was explained in detail, and its effectiveness was demonstrated on the solution of a transient uncoupled thermoelastic problem, for which an analytical solution is known, as well as on a fully coupled problem in the two-dimensional case.  相似文献   

2.
Summary  This paper presents a model of thermo-mechanical behaviour of viscoelastic elastomers under large strain. A formulation is proposed with a generalisation to large strain of the Poynting–Thomson rheological model. A finite element formulation is then exposed taking the incompressibility constraint for mechanical equilibrium into account. On the thermomechanical coupling aspect, an algorithm of time discretisation is proposed with two time scales corresponding respectively to mechanical and thermal behaviours. Finally, an application for the simulation of a double-shearing test is presented with an analysis of parameters' influence and a comparison between numerical and experimental results. Received 22 November 2000; accepted for publication 26 June 2001  相似文献   

3.
A new version of rate-independent generalized plasticity, suitable for the derivation of general thermomechanical constitutive laws for materials undergoing phase transformations, is proposed within a finite deformation framework. More specifically, by assuming an additive decomposition of the finite strain tensor into elastic and inelastic (transformation induced) parts and by considering the fractions of the various material phases as internal variables, a multi-phase formulation of the theory is developed. The concepts presented are applied for the derivation of a three-dimensional thermomechanical model for shape memory alloy materials. The ability of the model in simulating several patterns of the extremely complex behavior of these materials, under both monotonic and cyclic loadings, is assessed by representative numerical examples.  相似文献   

4.
Unified 2D continuum formulation of the nonlinear dynamic problem for a von Kármán shear indeformable symmetric cross-ply composite plate in a thermomechanical environment is presented, along with the ensuing reduction procedure ending up to a three-mode discretized model with unknown transverse displacement and membrane/bending temperatures. Systematic numerical analyses in the case of thermal dynamics passively entrained by the solely active mechanical excitations allow to unveil the main features of the nonlinear response, while highlighting fundamental aspects associated with the thermomechanical coupling. Local and global dynamics of a single-layer orthotropic plate are investigated under varying in-plane/transverse excitations or thermal property of the material. Comparison with the response provided by partially coupled models and the uncoupled mechanical oscillator enables to identify situations in which thermomechanical coupling affects the nonlinear response even in the solely passive thermal setting and to frame the relevant effects within known literature results.  相似文献   

5.
This paper deals with a numerical formulation for coupled thermoplastic problems including phase-change phenomena. The final goal is to get an accurate, efficient and robust numerical model, allowing the numerical simulation of solidification processes in the metal casting industry. Some of the current issues addressed in the paper are the following. A fractional step method arising from an operator split of the governing differential equations has been used to solve the nonlinear coupled system of equations, leading to a staggered product formula solution algorithm. Nonlinear stability issues are discussed and isentropic and isothermal operator splits are formulated. Within the isentropic split, a strong operator split design constraint is introduced, by requiring that the elastic and plastic entropy, as well as the phase-change induced elastic entropy due to the latent heat, remain fixed in the mechanical problem. The formulation of the model has been consistently derived within a thermodynamic framework. The constitutive behavior has been defined by a thermoelastoplastic free energy function, including a thermal multiphase change contribution. Plastic response has been modeled by a J2 temperature dependent model, including plastic hardening and thermal softening. A brief summary of the thermomechanical frictional contact model is included. The numerical model has been implemented into the computational Finite Element code COMET developed by the authors. A numerical assessment of the isentropic and isothermal operator splits, regarding the nonlinear stability behavior, has been performed for weakly and strongly coupled thermomechanical problems. Numerical simulations of solidification processes show the performance of the computational model developed.  相似文献   

6.
A coupled thermomechanical model to simulate light alloy solidification problems in permanent composite moulds is presented. This model is based on a general isotropic thermoelasto-plasticity theory and considers the different thermomechanical behaviours of each component of the mould as well as those of the solidifying material during its evolution from liquid to solid. To this end, plastic evolution equations, a phase-change variable and a specific free energy function are proposed in order to derive temperature-dependent material constitutive laws.The corresponding finite element formulation and the staggered scheme used to solve the coupled non-linear system of equations are also presented. Finally, the temperature and displacement predictions of the model are validated with laboratory measurements obtained during an experimental trial.  相似文献   

7.
It is well established that the use of inelastic constitutive equations accounting for induced softening, leads to pathological space (mesh) and time discretization dependency of the numerical solution of the associated Initial and Boundary Value Problem (IBVP). To avoid this drawback, many less or more approximate solutions have been proposed in the literature in order to regularize the IBVP and to obtain numerical solutions which are, at convergence, much less sensitive to the space and the time discretization. The basic idea behind these regularization techniques is the formulation of nonlocal constitutive equations by introducing some effects of characteristic lengths representing the materials microstructure. In this work, using the framework of generalized nonlocal continua, a thermodynamically-consistent micromorphic formulation using appropriate micromorphic state variables and their first gradients, is proposed in order to extend the classical local constitutive equations by incorporating appropriate characteristic internal lengths. The isotropic damage, the isotropic and the kinematic hardenings are supposed to carry the targeted micromorphic effects. First the theoretical aspects of this fully coupled micromorphic formulation is presented in details and the proposed generalized balance equations as well as the fully coupled micromorphic constitutive equations deduced. The associated numerical aspects in the framework of the classical Galerkin-based FE formulation are briefly discussed in the special case of micromorphic damage. Specifically, the formulation of 2D finite elements with additional degrees of freedom (d.o.f.), the dynamic explicit global resolution scheme as well as the local integration scheme, to compute the stress tensor and the state variables at each integration point of each element, are presented. Application is made to the typical uniaxial tension specimen under plane strain conditions in order to chow the predictive capabilities of the proposed micromorphic model, particularly against its ability to give (at convergence) a mesh independent solution even for high values of the ductile damage (i.e., the macroscopic cracks).  相似文献   

8.
The coupled thermomechanical numerical analysis of composite laminates with bridged delamination cracks loaded by a temperature gradient is described. The numerical approach presented is based on the framework of a cohesive zone model. A traction-separation law is presented which accounts for breakdown of the micromechanisms responsible for load transfer across bridged delamination cracks. The load transfer behavior is coupled to heat conduction across the bridged delamination crack. The coupled crack-bridging model is implemented into a finite element framework as a thermomechanical cohesive zone model (CZM). The fundamental response of the thermomechanical CZM is described. Subsequently, bridged delamination cracks of fixed lengths are studied. Values of the crack tip energy release rate and of the crack heat flux are computed to characterize the loading of the structure. Specimen geometries are considered that lead to crack opening through bending deformation and buckling delamination. The influence of critical mechanical and thermal parameters of the bridging zone on the thermomechanical delamination behavior is discussed. Bridging fibers not only contribute to crack conductance, but by keeping the crack opening small they allow heat flux across the delamination crack to be sustained longer, and thereby contribute to reduced levels of thermal stresses. The micro-mechanism based cohesive zone model allows the assessment of the effectiveness of the individual mechanisms contributing to the thermomechanical crack bridging embedded into the structural analysis.  相似文献   

9.
This paper has extended modified mixture theory with consideration of hydration swelling in unsaturated rock. By using non-equilibrium thermodynamics and Biot elasticity, a fully coupled formulation including hydration swelling term is derived. Standard arguments of non-equilibrium thermodynamics are used to derive the Darcy’s law for unsaturated flow. Helmholtz free energy has been used to give the relationship between the stress and pore pressure. The chemical potential of water in pore space and clay platelets has been included in the analysis of water sensitive materials such as shale. Finally, a simple numerical example has been presented for illustrative purpose, the results show that the swelling parameter has a strong influence on stress and strain.  相似文献   

10.
Biothermomechanics of skin is highly interdisciplinary involving bioheat transfer, burn damage, biomechanics and neurophysiology. During heating, thermally induced mechanical stress arises due to the thermal denaturation of collagen, resulting in macroscale shrinkage. Thus, the strain, stress, temperature and thermal pain/damage are highly correlated; in other words, the problem is fully coupled. The aim of this study is to develop a computational approach to examine the heat transfer process and the heat-induced mechanical response, so that the differences among the clinically applied heating modalities can be quantified. Exact solutions for temperature, thermal damage and thermal stress for a single-layer skin model were first derived for different boundary conditions. For multilayer models, numerical simulations using the finite difference method (FDM) and finite element method (FEM) were used to analyze the temperature, burn damage and thermal stress distributions in the skin tissue. The results showed that the thermomechanical behavior of skin tissue is very complex: blood perfusion has little effect on thermal damage but large influence on skin temperature distribution, which, in turn, influences significantly the resulting thermal stress field; the stratum corneum layer, although very thin, has a large effect on the thermomechanical behavior of skin, suggesting that it should be properly accounted for in the modeling of skin thermal stresses; the stress caused by non-uniform temperature distribution in the skin may also contribute to the thermal pain sensation.  相似文献   

11.
The paper outlines a constitutive model for finite thermo-visco-plastic behavior of amorphous glassy polymers and considers details of its numerical implementation. In contrast to existing kinematical approaches to finite plasticity of glassy polymers, the formulation applies a plastic metric theory based on an additive split of Lagrangian Hencky-type strains into elastic and plastic parts. The analogy between the proposed formulation in the logarithmic strain space and the geometrically linear theory of plasticity, makes this constitutive framework very transparent and attractive with regard to its numerical formulation. The characteristic strain hardening of the model is derived from a polymer network model. We consider the particularly simple eight chain model, but also comment on the recently developed microsphere model. The viscoplastic flow rule in the logarithmic strain space uses structures of the free volume flow theory, which provides a highly predictive modeling capacity at the onset of viscoplastic flow. The integration of this micromechanically motivated approach into a three-dimensional computational model is a key concern of this work. We outline details of the numerical implementation of this model, including elements such as geometric pre- and post-transformations to/from the logarithmic strain space, a thermomechanical operator split algorithm consisting of an isothermal mechanical predictor followed by a heat conduction corrector and finally, the consistent linearization of the local update algorithm for the dissipative variables as well as its relationship to the global tangent operator. The performance of the proposed formulation is demonstrated by means of a spectrum of numerical examples, which we compare with our experimental findings.  相似文献   

12.
An efficient domain/boundary decomposition method is presented for fully coupled thermomechanical problems with contact boundaries. The whole domain is regarded as a union of subdomains, an interface, and contact interfaces. Penalized variational formulations are performed to connect the interface or contact interfaces with the neighboring subdomains that satisfy continuity constraints on the displacement and temperature fields. As a result, non-linear finite element computations due to the contact boundaries can be localized within a few subdomains or contact interfaces. Therefore, the computational efficiency can be enhanced considerably by devising suitable solution algorithms. A variety of numerical examples were tested to confirm the important features of the new algorithms presented.  相似文献   

13.
A new parametric formulation for high-fidelity generalized method of cells (HFGMC) is presented for the micromechanical analysis of multiphase periodic composites. To this end, a linear parametric and geometric mapping is employed to transform arbitrary quadrilateral cell shapes from the physical space to an auxiliary uniform square shapes. A complete quadratic displacement expansion is performed in the mapped space. Thus, a new bilinear term is added to the quadratic displacement expansion; unlike the original HFGMC for regular array of rectangular cells where this term in not required. The continuity of displacements, tractions, together with the periodicity and equilibrium conditions are imposed in the average sense, similar to the original HFGMC formulation, using both the physical and mapping variables. However, the addition of bilinear terms requires the introduction of the first averaged moments of the equilibrium equations. In order to demonstrate the ability the new HFGMC formulation, spatial stress fields are compared with analytical and numerical solutions of circular and elliptical fibers in an infinite medium. Furthermore, two progressive damage methodologies are coupled with the new HFGMC formulation in order to predict the strain softening and elastic degrading behaviors. The first methodology employs a cell extinction approach, while the second uses cohesive interfaces between the cells. Due to the strain softening, both damage methodologies require an iterative solution approach of the governing system nonlinear equations. Damage applications are presented for the transverse loading of composites with square and hexagonal repeating unit-cells (RUC).  相似文献   

14.
A new viscoelastic cohesive zone model is formulated for large deformation conditions and within a fully coupled thermomechanical framework. The model is suitable for the simulation of a wide range of problems especially for polymeric materials. It can capture viscoelastic crack propagation as well as energy dissipation due to this process. Starting from the principles of thermodynamics, a 3D finite element formulation is derived for a fully coupled simultaneous solution of the thermal field and the deformation field. The viscoelastic model is constructed by extending an elastic exponential traction separation law using a simple rheology. The viscous part of the tractions is postulated to have the same characteristic length as the elastic part and that they are related by a single material parameter. A Newtonian dashpot is used to describe the evolution of the viscous separation. Furthermore, thermal effects are accounted for using temperature expressions in both the traction laws and the viscosity of the dashpot, and using a heat conduction law across the interface. The model is implemented within an implicit finite element code and the internal variable is calculated using an internal iteration. Different numerical examples are used to verify the model and a comparison with experimental data shows a satisfactory agreement.  相似文献   

15.
This Note presents a time-integration strategy for computing the evolution of structures embedding shape-memory alloys in a thermomechanical setting. A variational formulation is associated with the scheme proposed, which allows one to study the existence and unicity of solutions depending on the material model considered. A numerical example is presented to illustrate the method and discuss the influence of the thermomechanical coupling. To cite this article: M. Peigney, C. R. Mecanique 334 (2006).  相似文献   

16.
申志强  夏军  宋殿义  程盼 《力学学报》2018,50(5):1093-1103
近年来由各类新型复合材料或功能梯度材料构成的板结构在工程领域得到了广泛应用,其显著特点是材料性能沿板厚变化.为合理考虑横向剪切应变,许多学者基于Reddy高阶剪切变形理论,构建了不同的有限元单元对该类板结构进行分析,但其中满足$C^{1}$连续条件的单元相对较少.本文基于Reddy高阶剪切变形理论,采用求积元方法,建立了$C^{1}$连续的四边形板单元.利用该单元对均质材料、复合材料、功能梯度材料构成的等厚度矩形板、变厚度矩形板及等厚度斜板的线弹性弯曲和自由振动问题进行了计算分析,并与现有文献中的相应计算结果进行了对比.研究表明:基于高阶剪切变形理论的四边形求积元板单元具有较高的计算效率和良好的适应性,文中各类材料构成的等变厚度矩形板及等厚度斜板均只需1个单元即可得到理想的计算结果.对于等/变厚度矩形板,可仅使用9$\times$9个积分点,而对于等厚度斜板,随着斜角的增大,所需积分点的数目逐渐增多至15$\times $15.该四边形求积元板单元可进一步用于新型复合材料板的非线性分析.   相似文献   

17.
采用共旋应变的三维热弹塑性有限变形有限元法   总被引:3,自引:0,他引:3  
本文采用线性化共旋应变张量和增率型虚功原理,建立了有限变形热力耦合弹塑性有限元法。在该方法中,材料的流动应力取为应变总量、应变速率和温度的函数,推导了包含这种函数关系的本构矩阵。另外在温度场分析中,考虑了塑性功和摩擦功转化的热量。文后给出的算例表明该方法可以很好地模拟热加工过程。  相似文献   

18.
19.
An improved gradient-enhanced approach for softening elasto-plasticity is proposed, which in essence is fully nonlocal, i.e. an equivalent integral nonlocal format exists. The method utilises a nonlocal field variable in its constitutive framework, but in contrast to the integral models computes this nonlocal field with a gradient formulation. This formulation is considered ‘implicit’ in the sense that it strictly incorporates the higher-order gradients of the local field variable indirectly, unlike the common (explicit) gradient approaches. Furthermore, this implicit gradient formulation constitutes an additional partial differential equation (PDE) of the Helmholtz type, which is solved in a coupled fashion with the standard equilibrium condition. Such an approach is particularly advantageous since it combines the long-range interactions of an integral (nonlocal) model with the computational efficiency of a gradient formulation. Although these implicit gradient approaches have been successfully applied within damage mechanics, e.g. for quasi-brittle materials, the first attempts were deficient for plasticity. On the basis of a thorough comparison of the gradient-enhancements for plasticity and damage this paper rephrases the problem, which leads to a formulation that overcomes most reported problems. The two-dimensional finite element implementation for geometrically linear plain strain problems is presented. One- and two-dimensional numerical examples demonstrate the ability of this method to numerically model irreversible deformations, accompanied by the intense localisation of deformation and softening up to complete failure.  相似文献   

20.
A new formulation is presented for the modeling of immiscible compressible two-phase flow in porous media taking into account gravity, capillary effects, and heterogeneity. The formulation is intended for the numerical simulation of multidimensional flows and is fully equivalent to the original equations, contrary to the one introduced in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986). The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically. A finite volume method is used to solve the global pressure equation and the saturation equation for the water and gas phase in the context of gas migration through engineered and geological barriers for a deep repository for radioactive waste. Numerical results for the one-dimensional problem are presented. The accuracy of the fully equivalent fractional flow model is demonstrated through comparison with the simplified model already developed in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号