首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approach for the coupled thermomechanical analysis of composite structures with bridged cracks is described. A crack bridging law is presented that accounts for breakdown of load as well as of heat transfer across the crack with increasing crack opening. The crack bridging law is implemented into a finite element framework as a cohesive zone model and is used for the investigation of unidirectional laminates under prescribed temperature gradients. The effects of crack bridging parameters on energy release rates, mode mixity and crack heat flux is discussed for boundary conditions which lead to crack opening either through bending deformation or delamination buckling.  相似文献   

2.
3.
复合材料粘聚区模型的强度参数预测   总被引:1,自引:0,他引:1  
提出了一种基于周期性代表性单元(RVE)的细观模型,用于预测粘聚区模型的强度参数,以提高基于粘聚区模型的有限元法模拟复合材料分层的精度。模型从复合材料的细观结构出发,采用最大主应力准则判断粘聚层的初始裂纹的萌生,从而建立了粘聚强度与基体强度的关系;并以宏观正交各向异性为假设条件,确定了RVE的周期性位移边界条件。用该模型预测了AS4/PEEK和T700/QY8911层合板不同铺层间的粘聚强度。采用所预测的粘聚强度值对混合模式弯曲(MMB)和六点弯曲试验进行了仿真,仿真结果与实验值具有较好的一致性。  相似文献   

4.
A series of experimental results on the in-plane fracture of a fiber reinforced laminated composite panel is analyzed using the variational multiscale cohesive method (VMCM). The VMCM results demonstrate the influence of specimen geometry and load distribution on the propagation of large scale bridging cracks in the fiber reinforced panel. Experimentally observed variation in fracture resistance is substantiated numerically by comparing the experimental and VMCM load–displacement responses of geometrically scaled single edge-notch three point bend (SETB) specimens. The results elucidate the size dependence of the traction-separation relationship for this class of materials even in moderately large specimens, contrary to the conventional understanding of it being a material property. The existence of a “free bridging zone” (different from the conventional “full bridging zone”) is recognized, and its influence on the evolving fracture resistance is discussed. The numerical simulations and ensuing bridging zone evolution analysis demonstrates the versatility of VMCM in objectively simulating progressive crack propagation, compared against conventional numerical schemes like traditional cohesive zone modeling, which require a priori knowledge of the crack path.  相似文献   

5.
6.
A thermo-mechanical cohesive zone formulation for ductile fracture   总被引:1,自引:0,他引:1  
The paper addresses the possibility to project both mechanical and thermal phenomena pertinent to the fracture process zone into a cohesive zone. A wider interpretation of the notion cohesive zone is thereby suggested to comprise not only stress degradation due to micro-cracking but also heat generation and energy transport. According to our experience, this widening of the cohesive zone concept allows for a more efficient finite element simulation of ductile fracture. The key feature of the formulation concerns the thermo-mechanical cohesive zone model, evolving within the thermo-hyperelastoplastic continuum, allowing for the concurrent modelling of both heat generation, due to the fracture process, and heat transfer across the fracture process zone. This is accomplished via thermodynamic arguments to obtain the coupled governing equation of motion, energy equation, and constitutive equations. The deformation map is thereby defined in terms of independent continuous and discontinuous portions of the displacement field. In addition, as an extension of the displacement kinematics, to represent the temperature field associated with the discontinuous heat flux across the fracture interface, a matching discontinuous temperature field involving the interface (or band) temperature is proposed. In the first numerical example, concerning dynamic quasi-brittle crack propagation in a thermo-hyperelastoplastic material, we capture the initial increase in temperature close to the crack surface due to the energy dissipating fracture process. In the second example, a novel application of ductile fracture simulation to the process of high velocity (adiabatic) cutting is considered, where some general trends are observed when varying the cutting velocity.  相似文献   

7.
The accuracy of an adopted cohesive zone model (CZM) can affect the simulated fracture response significantly. The CZM has been usually obtained using global experimental response, e.g., load versus either crack opening displacement or load-line displacement. Apparently, deduction of a local material property from a global response does not provide full confidence of the adopted model. The difficulties are: (1) fundamentally, stress cannot be measured directly and the cohesive stress distribution is non-uniform; (2) accurate measurement of the full crack profile (crack opening displacement at every point) is experimentally difficult to obtain. An attractive feature of digital image correlation (DIC) is that it allows relatively accurate measurement of the whole displacement field on a flat surface. It has been utilized to measure the mode I traction-separation relation. A hybrid inverse method based on combined use of DIC and finite element method is used in this study to compute the cohesive properties of a ductile adhesive, Devcon Plastic Welder II, and a quasi-brittle plastic, G-10/FR4 Garolite. Fracture tests were conducted on single edge-notched beam specimens (SENB) under four-point bending. A full-field DIC algorithm was employed to compute the smooth and continuous displacement field, which is then used as input to a finite element model for inverse analysis through an optimization procedure. The unknown CZM is constructed using a flexible B-spline without any “a priori” assumption on the shape. The inversely computed CZMs for both materials yield consistent results. Finally, the computed CZMs are verified through fracture simulation, which shows good experimental agreement.  相似文献   

8.
内聚力模型已经被广泛应用于需要考虑断裂过程区的裂纹问题当中,然而常用的数值方法应用于分析内聚力模型裂纹问题时还存在着一些不足,比如不能准确的给出断裂过程区的长度、需要网格加密等。为了克服这些缺点,论文构造了一个新型的解析奇异单元,并将之应用于基于内聚力模型的裂纹分析当中。首先将虚拟裂纹表面处的内聚力用拉格拉日插值的方法近似表示为多项式的形式,而多项式表示的内聚力所对应的特解可以被解析地给出。然后利用一个简单的迭代分析,基于内聚力模型的裂纹问题就可以被模拟出来了。最后,给出二个数值算例来证明本文方法的有效性。  相似文献   

9.
This work presents a thermodynamic-based cohesive zone framework to model healing in materials that tend to self-heal. The nominal, healing and effective configurations of continuum damage-healing mechanics are extended to represent cohesive zone configurations. To incorporate healing in a cohesive zone model, the principle of virtual power is used to derive the local static/dynamic macroforce balance and the boundary traction as well as the damage and healing microforce balances. A thermodynamic framework for constitutive modeling of damage and healing mechanisms of cracks is used to derive the evolution equations for the damage and healing internal state variables. The effects of temperature, resting time, crack closure, history of healing and damage, and level of damage on the healing behavior of the cohesive zone are incorporated. The proposed model promises solid basis for understanding the self-healing phenomena in self-healing materials.  相似文献   

10.
数学网格和物理网格分离的有限单元法(I):基本理论   总被引:5,自引:4,他引:1  
常规有限单元法在复杂边界问题的网格剖分、可移动边界和非连续变形问题的数值模拟等方面存在困难.本文将常规的有限单元分离为几何上相互独立的数学单元和物理单元,基于数学单元构造近似函数,引入位移模式关联法则以确定物理单元的位移模式,提出了在现有有限单元法框架内、基于数学网格和物理网格分离的强化有限单元法(FEM++).与常规有限单元法(SFEM)比较表明,强化有限单元法不仅很好地克服了常规有限单元法网格剖分上的困难,而且提供了一条更简便、更自然的分析移动边界问题和非连续变形问题的新途径.最后,通过数值算例验证了强化有限单元法的适用性和有效性.  相似文献   

11.
Previous experimental investigations [Shang, F., Kitamura, T., Hirakata, H., Kanno, I., Kotera, H., Terada, K., 2005. Experimental and theoretical investigations of delamination at free edge of interface between piezoelectric thin films on a substrate. International Journal of Solids and Structures 42 (5–6) 1729–1741] have demonstrated that multilayered Cr/PZT/PLT/Pt/Ti thin films deposited on single-crystal silicon substrates are delaminated along the interface between Cr and PZT layers in a brittle manner. This study starts with a model based on the cohesive zone concept and carries out numerical simulations to check the fracture behavior of this interfacial delamination. Three types of cohesive zone models (CZMs) are adopted, including the exponential, bilinear, and trapezoidal models. Characteristic CZM parameters are extracted through comparisons with experimental results. The simulation results show that (i) cohesive strength and work of separation are the dominating parameters in the CZMs; (ii) the bilinear CZM more suitably describes this brittle interfacial delamination; and (iii) in comparison with typical several mm-thick film/coating materials, the fracture energy of this weak Cr/PZT interface is quite low. Our study demonstrates the applicability of CZM in characterizing the interface fracture behavior of film materials with micrometer thicknesses.  相似文献   

12.
强化有限单元法将物理网格与数学网格分离开来,可以方便地描述非连续变形;粘聚区域模型是模拟断裂过程区作用最简单有效的方法,且可以避免裂纹尖端的应力奇异性.本文以平面问题为例,将强化有限单元法与粘聚区域模型相结合,利用富集数学节点描述任意粘聚裂纹扩展过程中的非连续变形问题,提出了裂纹扩展过程中数学节点富集和数学单元定义的方法.本文还导出了与平面4~8节点平面等参单元对应的8~16节点粘聚裂纹单元列武.最后,通过三点弯梁的裂纹扩展过程模拟验证了本文提出的粘聚裂纹扩展模拟方法的有效性.  相似文献   

13.
A new viscoelastic cohesive zone model is formulated for large deformation conditions and within a fully coupled thermomechanical framework. The model is suitable for the simulation of a wide range of problems especially for polymeric materials. It can capture viscoelastic crack propagation as well as energy dissipation due to this process. Starting from the principles of thermodynamics, a 3D finite element formulation is derived for a fully coupled simultaneous solution of the thermal field and the deformation field. The viscoelastic model is constructed by extending an elastic exponential traction separation law using a simple rheology. The viscous part of the tractions is postulated to have the same characteristic length as the elastic part and that they are related by a single material parameter. A Newtonian dashpot is used to describe the evolution of the viscous separation. Furthermore, thermal effects are accounted for using temperature expressions in both the traction laws and the viscosity of the dashpot, and using a heat conduction law across the interface. The model is implemented within an implicit finite element code and the internal variable is calculated using an internal iteration. Different numerical examples are used to verify the model and a comparison with experimental data shows a satisfactory agreement.  相似文献   

14.
15.
Model I quasi-static nonlinear fracture of aluminum foams is analyzed by considering the effect of microscopic heterogeneity. Firstly, a continuum constitutive model is adopted to account for the plastic compressibility of the metallic foams. The yield strain modeled by a two- parameter Weibull-type function is adopted in the constitutive model. Then, a modified cohesive zone model is established to characterize the fracture behavior of aluminum foams with a cohesive zone ahead of the initial crack. The tensile traction versus local crack opening displacement relation is employed to describe the softening characteristics of the material. And a Weibull statistical model for peak bridging stress within the fracture process zone is used for considering microscopic heterogeneity of aluminum foams. Lastly, the influence of stochastic parameters on the curve of stress-strain is given. Numerical examples are given to illustrate the numerical model presented in this paper and the effects of Weibull parameters and material properties on J-integral are discussed.  相似文献   

16.
Multiple cracks interaction plays an important role in fracture behavior of materials. A number of studies have been devoted to analytical and numerical analyses of the doubly periodic arrays of cracks. A very natural and highly accurate solution procedure is proposed to describe the interaction effect among the doubly periodic rectangular-shaped arrays of cracks. The proposed solution is implemented in the framework of continuously distributed dislocation model and singular integral equation approach. The accuracy of this solution is proved through a comparison of results from the present simulation and known closed form solutions. Further, the interaction effects among the periodic cracks on the plastic zone size and crack tip opening displacement are studied. It is found that the interaction distance among the vertical and horizontal periodic cracks is quite different.  相似文献   

17.
内聚力模型的形状对胶接结构断裂过程的影响   总被引:1,自引:0,他引:1  
张军  贾宏 《力学学报》2016,48(5):1088-1095
内聚力模型被广泛应用于粘接结构的断裂数值模拟过程中,为深入分析不同形状内聚力模型与胶黏剂性质和粘接结构断裂之间的关系,本文分别采用脆性和延展性两种类型胶黏剂,对其粘接的对接试件进行了单轴拉伸、剪切实验,以及其粘接的双臂梁试件进行了断裂实验.3种类型的内聚力模型(抛物线型、双线型和三线型)分别模拟了以上粘接结构的断裂过程,并与实验结果进行对比.结果发现:双线型的内聚力模型适用计算脆性胶黏剂的拉伸与剪切的断裂过程;指数型内聚力模型较适合计算延展性胶黏剂的拉伸和剪切的断裂过程,临界应力、断裂能和模型的形状参数是分析拉伸和剪切的重要参数;双臂梁试件的断裂过程模拟结果发现,断裂曲线与胶黏剂性质有关,内聚力模型形状参数也有影响.通过实验与计算结果分析,双线型内聚力模型更适合脆性胶黏剂粘接的双臂梁断裂计算,而三线型更适合计算延展性胶黏剂粘接的双臂梁断裂过程,此研究结果对胶黏剂的使用和粘接结构的断裂分析有很重要意义.  相似文献   

18.
Crack initiation and crack growth resistance in elastic plastic materials, dominated by crack-tip plasticity are analyzed with the crack modeled as a cohesive zone. Two different types (exponential and bilinear) of cohesive zone models (CZMs) have been used to represent the mechanical behavior of the cohesive zones. In this work, it is suggested that different forms of CZMs (e.g., exponential, bilinear) are the manifestations of different micromechanisms-based inelastic processes that participate in dissipating energy during the fracture process and each form is specific to each material system. It is postulated that the total energy release rate comprises the plastic dissipation rate in the bounding material and the separation energy rate within the fracture process zone, the latter is determined by CZMs. The total energy release rate then becomes a function of the material properties (e.g., yield strength, strain hardening exponent) and cohesive properties of the fracture process zone (e.g., cohesive strength and cohesive energy), and the form of cohesive zone model (CZM) that determines the rate of energy dissipation in the forward and wake regions of the crack. The effects of material parameters, cohesive zone parameters as well as the form/shape of CZMs in predicting the crack growth resistance and the size of plastic zone (SPZ) surrounding the crack tip are systematically examined. It is found that in addition to the cohesive strength and cohesive energy, the form (shape) of the traction–separation law of CZM plays a very critical role in determining the crack growth resistance (R-curve) of a given material. It is further observed that the shape of the CZM corresponds to inelastic processes active in the forward and wake regions of the crack, and has a profound influence on the R-curve and SPZ.  相似文献   

19.
20.
利用高速空气炮进行了冰雹撞击复合材料T型接头的实验,研究了不同撞击速度下结构的损伤情况。同时,采用光滑质点流体动力学方法与黏聚区模型相结合的方法,对冰雹撞击复合材料T型接头进行了数值模拟。通过与实验结果的对比,验证了数值模拟模型的有效性。在此基础上,利用数值模型研究了影响复合材料T型接头冰雹撞击损伤的各种因素。计算结果表明:冰雹撞击对复合材料T型接头造成的损伤主要为分层损伤;冰雹的撞击速度、尺寸、入射角等,都对T型接头的损伤程度有很大影响;T型接头的分层面积与冰雹的撞击能量之间呈近似线性关系,分层面积随着撞击能量的增大而增大;冰雹的入射角越大,分层面积与撞击力峰值也越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号