首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper deals with a thermodynamically consistent numerical formulation for coupled thermoplastic problems including phase-change phenomena and frictional contact. The final goal is to get an accurate, efficient and robust numerical model, able for the numerical simulation of industrial solidification processes. Some of the current issues addressed in the paper are the following. A fractional step method arising from an operator split of the governing differential equations has been used to solve the nonlinear coupled system of equations, leading to a staggered product formula solution algorithm. Nonlinear stability issues are discussed and isentropic and isothermal operator splits are formulated. Within the isentropic split, a strong operator split design constraint is introduced, by requiring that the elastic and plastic entropy, as well as the phase-change induced elastic entropy due to the latent heat, remain fixed in the mechanical problem. The formulation of the model has been consistently derived within a thermodynamic framework. All the material properties have been considered to be temperature dependent. The constitutive behavior has been defined by a thermoviscous/elastoplastic free energy function, including a thermal multiphase change contribution. Plastic response has been modeled by a J2 temperature dependent model, including plastic hardening and thermal softening. The constitutive model proposed accounts for a continuous transition between the initial liquid state, the intermediate mushy state and the final solid state taking place in a solidification process. In particular, a pure viscous deviatoric model has been used at the initial fluid-like state. A thermomecanical contact model, including a frictional hardening and temperature dependent coupled potential, is derived within a fully consistent thermodinamical theory. The numerical model has been implemented into the computational finite element code COMET developed by the authors. Numerical simulations of solidification processes show the good performance of the computational model developed.  相似文献   

2.
A coupled thermomechanical model to simulate light alloy solidification problems in permanent composite moulds is presented. This model is based on a general isotropic thermoelasto-plasticity theory and considers the different thermomechanical behaviours of each component of the mould as well as those of the solidifying material during its evolution from liquid to solid. To this end, plastic evolution equations, a phase-change variable and a specific free energy function are proposed in order to derive temperature-dependent material constitutive laws.The corresponding finite element formulation and the staggered scheme used to solve the coupled non-linear system of equations are also presented. Finally, the temperature and displacement predictions of the model are validated with laboratory measurements obtained during an experimental trial.  相似文献   

3.
The paper outlines a constitutive model for finite thermo-visco-plastic behavior of amorphous glassy polymers and considers details of its numerical implementation. In contrast to existing kinematical approaches to finite plasticity of glassy polymers, the formulation applies a plastic metric theory based on an additive split of Lagrangian Hencky-type strains into elastic and plastic parts. The analogy between the proposed formulation in the logarithmic strain space and the geometrically linear theory of plasticity, makes this constitutive framework very transparent and attractive with regard to its numerical formulation. The characteristic strain hardening of the model is derived from a polymer network model. We consider the particularly simple eight chain model, but also comment on the recently developed microsphere model. The viscoplastic flow rule in the logarithmic strain space uses structures of the free volume flow theory, which provides a highly predictive modeling capacity at the onset of viscoplastic flow. The integration of this micromechanically motivated approach into a three-dimensional computational model is a key concern of this work. We outline details of the numerical implementation of this model, including elements such as geometric pre- and post-transformations to/from the logarithmic strain space, a thermomechanical operator split algorithm consisting of an isothermal mechanical predictor followed by a heat conduction corrector and finally, the consistent linearization of the local update algorithm for the dissipative variables as well as its relationship to the global tangent operator. The performance of the proposed formulation is demonstrated by means of a spectrum of numerical examples, which we compare with our experimental findings.  相似文献   

4.
In this paper, we present a thermomechanical framework which makes use of the internal variable theory of thermodynamics for damage-coupled finite viscoplasticity with nonlinear isotropic hardening. Damage evolution, being an irreversible process, generates heat. In addition to its direct effect on material's strength and stiffness, it causes deterioration of the heat conduction. The formulation, following the footsteps of Simó and Miehe (1992), introduces inelastic entropy as an additional state variable. Given a temperature dependent damage dissipation potential, we show that the evolution of inelastic entropy assumes a split form relating to plastic and damage parts, respectively. The solution of the thermomechanical problem is based on the so-called isothermal split. This allows the use of the model in 2D and 3D example problems involving geometrical imperfection triggered necking in an axisymmetric bar and thermally triggered necking of a 3D rectangular bar.  相似文献   

5.
A finite element, thermally coupled incompressible flow formulation considering phase‐change effects is presented. This formulation accounts for natural convection, temperature‐dependent material properties and isothermal and non‐isothermal phase‐change models. In this context, the full Navier–Stokes equations are solved using a generalized streamline operator (GSO) technique. The highly non‐linear phase‐change effects are treated with a temperature‐based algorithm, which provides stability and convergence of the numerical solution. The Boussinesq approximation is used in order to consider the temperature‐dependent density variation. Furthermore, the numerical solution of the coupled problem is approached with a staggered incremental‐iterative solution scheme, such that the convergence criteria are written in terms of the residual vectors. Finally, this formulation is used for the solutions of solidification and melting problems validating some numerical results with other existing solutions obtained with different methodologies. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
In this work we discuss a covariant formulation of the finite strain viscoplasticity in a fully coupled thermomechanical setting. The formulation is presented within the framework of the principal axis methodology, which leads to a very efficient numerical implementation. Several numerical simulations, dealing with fully coupled thermomechanical response at large viscoplastic strains and including both strain localization and cyclic loading cases, are presented in order to illustrate a very satisfying performance of the proposed methodology.  相似文献   

7.
Summary A formulation of isotropic thermoplasticity for arbitrary large elastic and plastic strains is presented. The underlying concept is the introduction of a metric transformation tensor which maps a locally defined six-dimensional plastic metric onto the metric of the current configuration. This mixed-variant tensor field provides a basis for the definition of a local isotropic hyperelastic stress response in the thermoplastic solid. Following this fundamental assumption, we derive a consistent internal variable formulation of thermoplasticity in a Lagrangian as well as a Eulerian geometric setting. On the numerical side, we discuss in detail an objective integration algorithm for the mixed-variant plastic flow rule. The special feature here is a new representation of the stress return and the algorithmic elastoplastic moduli in the eigenvalue space of the Eulerian plastic metric for plane problems. Furthermore, an algorithm for the solution of the coupled problem is formulated based on an operator split of the global field equations of thermoplasticity. The paper concludes with two representative numerical simulations of thermoplastic deformation processes.  相似文献   

8.
In this paper, a physical model of the structure and attenuation of shock waves in metals is presented. In order to establish the constitutive equations of materials under high velocity deformation and to study the structure of transition zone of shock wave, two independent approaches are involved. Firstly, the specific internal energy is decomposed into the elastic compression energy and elastic deformation energy, and the later is represented by an expansion to third-order terms in elastic strain and entropy, including the coupling effect of heat and mechanical energy. Secondly, a plastic relaxation function describing the behaviour of plastic flow under high temperature and high pressure is suggested from the viewpoint of dislocation dynamics. In addition, a group of ordinary differential equations has been built to determine the thermo-mechanical state variables in the transition zone of a steady shock wave and the thickness of the high pressure shock wave, and an analytical solution of the equations can be found provided that the entropy change across the shock is assumed to be negligible and Hugoniot compression modulus is used instead of the isentropic compression modulus. A quite approximate method for solving the attenuation of shock wave front has been proposed for the flat-plate symmetric impact problem.  相似文献   

9.
In this paper we focus on the development of a beam theory for a small strain continuum model of thermoviscoelastic shape memory polymers (SMP). Rather than a history integral model that is common for viscoelastic materials, a thermodynamically based state evolution model developed by Ghosh and Srinivasa (2011a) is used as the basis for the beam model based on the Euler–Bernoulli beam theory. An example of a three-point bend test is simulated using the beam theory model. The numerical solution is implemented by using an operator split technique that utilizes an elastic predictor and dissipative corrector. The key idea is that the elastic predictor is based on the solution to a beam theory boundary value problem while the dissipative corrector is entirely local (and hence can be parallelized) and is applied by considering the beam as a two or three dimensional body. This enables a very rapid solution of the problem yet maintaining fidelity of the distribution of inelastic strains across the cross-section. A displacement based convergence criterion is used in each time step. This algorithm is validated by using a three-point bending experiment for three different material cases: elastic, plastic and thermoplastic response. Time step convergence and mesh density convergence studies are carried out for the thermoviscoelastic FEM model. Finally, we implement and study this model for a SMP beam undergoing three-point bending strain recovery and stress recovery thermomechanical loading.  相似文献   

10.
This contribution deals with the nonlinear analysis of shape memory alloy (SMA) adaptive trusses employing the finite element method. Geometrical nonlinearities are incorporated into the formulation together with a constitutive model that describes different thermomechanical behaviors of SMA. It has four macroscopic phases (three variants of martensite and an austenitic phase), and considers different material properties for austenitic and martensitic phases together with thermal expansion. An iterative numerical procedure based on the operator split technique is proposed in order to deal with the nonlinearities in the constitutive formulation. This procedure is introduced into ABAQUS as a user material routine. Numerical simulations are carried out illustrating the ability of the developed model to capture the general behavior of shape memory bars. After that, it is analyzed the behavior of some adaptive trusses built with SMA actuators subjected to different thermomechanical loadings.  相似文献   

11.
12.
In this work a fixed mesh finite element approach is presented to solve thermally coupled flow problems including moving interfaces between immiscible fluids and phase-change effects. The weak form of the full incompressible Navier-Stokes equations is obtained using a generalized streamline operator (GSO) technique that enables the use of equal order interpolation of the primitive variables of the problem: velocity, pressure and temperature. The interfaces are defined with a mesh of marker points whose motion is obtained applying a Lagrangian scheme. Moreover, a temperature-based formulation is considered to describe the phase-change phenomena. The proposed methodology is used in the analysis of a filling of a step mould and a gravity-driven flow of an aluminium alloy in an obstructed vertical channel.  相似文献   

13.
A coupled thermo-mechanical problem is presented in this paper. The constitutive model is based on thermoplastic model for large strains where both kinematic and isotropic hardening are included. It is shown that a non-associated plasticity formulation enables thermodynamic consistent heat generation to be modeled, which can be fitted accurately to experimental data. In the numerical examples the effect of heat generation is investigated and both thermal softening and temperature-dependent thermal material parameters are considered. The constitutive model is formulated such that pure isotropic and pure kinematic hardening yield identical uniaxial mechanical response and mechanical dissipation. Thus, differences in response due to hardening during non-proportional loading can be studied. Thermally triggered necking is studied, as well as cyclic loading of Cook’s membrane. The numerical examples are solved using the finite element method, and the coupled problem that arises is solved using a staggered method where an isothermal split is adopted.  相似文献   

14.
A thermomechanical model of a porous material is presented. The constitutive model is based on the Gurson model, formulated within a thermodynamic framework and adapted to large deformations. The thermodynamic framework yields a heat equation that naturally includes the mechanical dissipation. To introduce a length scale, the Gurson model was enhanced through non-local effects of the porosity being taken into account. A numerical integration scheme of the constitutive model and the algorithmic stiffness tensor are derived. The integration of the plastic part of the deformation gradient is based on an exponential update operator, an eigenvalue decomposition is also being used to reduce the number of equations that need to be solved. The coupled problem that arises is dealt with by employing a staggered solution method. To examine the capabilities of the model, shear band formation in a thick disc and crack growth in a thick notched disc were investigated.  相似文献   

15.
Transformation induced plasticity is defined as the plastic flow arising from solid state phase transformation processes involving volume and/or shape changes without overlapping the yield surface. This phenomenon occurs in shape memory alloys (SMAs) having significant influence over their macroscopic thermomechanical behavior. This contribution presents a macroscopic three-dimensional constitutive model to describe the thermomechanical behavior of SMAs including classical and transformation induced plasticity. Comparisons between numerical and experimental results attest the model capability to capture plastic phenomena. Both uniaxial and multiaxial simulations are carried out.  相似文献   

16.
The effects of strain, strain rate and temperature on the mechanical behavior of 22MnB5 boron steel deformed isothermally under uniaxial tension tests and the experimental characterization of 22MnB5 boron steel in the austenitic region have been investigated. Based on the crystal plasticity theory and thermal kinematics, an improved integration model is presented. In this model, the elastic deformation gradient is the integration variable of the governing equation, which contains not only the elastic deformation but also the thermal effects. In the coupled thermo- mechanical process, this model can reveal the evolution of microstructures such as the rotation of a single crystal and the slip systems in each of them. The plastic behavior of the boron steel can be well described by the presented model.  相似文献   

17.
The present paper is concerned with the numerical modelling of the large elastic–plastic deformation behavior and localization prediction of ductile metals which are sensitive to hydrostatic stress and anisotropically damaged. The model is based on a generalized macroscopic theory within the framework of nonlinear continuum damage mechanics. The formulation relies on a multiplicative decomposition of the metric transformation tensor into elastic and damaged-plastic parts. Furthermore, undamaged configurations are introduced which are related to the damaged configurations via associated metric transformations which allow for the interpretation as damage tensors. Strain rates are shown to be additively decomposed into elastic, plastic and damage strain rate tensors. Moreover, based on the standard dissipative material approach the constitutive framework is completed by different stress tensors, a yield criterion and a separate damage condition as well as corresponding potential functions. The evolution laws for plastic and damage strain rates are discussed in some detail. Estimates of the stress and strain histories are obtained via an explicit integration procedure which employs an inelastic (damage-plastic) predictor followed by an elastic corrector step. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. A variety of large strain elastic–plastic-damage problems including severe localization is presented, and the influence of different model parameters on the deformation and localization prediction of ductile metals is discussed.  相似文献   

18.
We present a continuum model for thermally induced volume transitions in stimulus–responsive hydrogels (SRHs). The framework views the transition as proceeding via the motion of a sharp interface separating swollen and collapsed phases of the underlying polymer network. In addition to bulk and interfacial force and energy balances, our model imposes an interfacial normal configurational force balance. To account for the large volume changes exhibited by SRHs during actuation, the governing equations are developed in the setting of finite-strain kinematics. The numerical approximations to the coupled thermomechanical equations are obtained with an extended finite element/level-set method. The solution strategy involves a non-standard operator split and a simplified version of the level-set update. A number of representative problems are considered to investigate the model and compare its predictions to experimental observations. In particular, we consider the thermally induced swelling of spherical and cylindrical specimens. The stability of the interface evolution is also examined.  相似文献   

19.
In the present work we propose a new thermomechanically coupled material model for shape memory alloys (SMA) which describes two important phenomena typical for the material behaviour of shape memory alloys: pseudoelasticity as well as the shape memory effect. The constitutive equations are derived in the framework of large strains since the martensitic phase transformation involves inelastic deformations up to 8%, or even up to 20% if the plastic deformation after the phase transformation is taken into account. Therefore, we apply a multiplicative split of the deformation gradient into elastic and inelastic parts, the latter concerning the martensitic phase transformation. An extended phase transformation function has been considered to include the tension–compression asymmetry particularly typical for textured SMA samples. In order to apply the concept in the simulation of complex structures, it is implemented into a finite element code. This implementation is based on an innovative integration scheme for the existing evolution equations and a monolithic solution algorithm for the coupled mechanical and thermal fields. The coupling effect is accurately investigated in several numerical examples including pseudoelasticity as well as the free and the suppressed shape memory effect. Finally, the model is used to simulate the shape memory effect in a medical foot staple which interacts with a bone segment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号