首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam.With the independent pushing beam,the atomic flux can be substantially optimized.The total atomic flux maximum obtained in the 2D-HP MOT is4.02 × 1010atoms/s,increased by 60 percent compared to the traditional 2D+MOT in our experiment.Moreover,with the pushing power 10 μW and detuning 0Γ,the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20.The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s.The dependences of the atomic flux on the pushing power and detuning are studied in detail.The experimental results are in good agreement with the theoretical model.  相似文献   

2.
An atom faucet   总被引:3,自引:0,他引:3  
We present a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap (MOT), a thin laser beam extracts a continuous jet of cold rubidium atoms. The jet that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. We also present a simple three dimensional numerical simulation of the atomic motion in the presence of these multiple saturating laser fields combined with the inhomogeneous magnetic field of the MOT. At a pressure of P Rb87 = 10-8 mbar and with a moderate laser power of 10 mW per beam, we generate a flux Φ = 1.3×108 atoms/s with a mean velocity of 14 m/s and a divergence of 10 mrad. Received 13 January 2001  相似文献   

3.
闫树斌  耿涛  张天才  王军民 《中国物理》2006,15(8):1746-1751
We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of ~ 1×10-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of ~ 8×10-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is ~2×107 atoms/s. About 5×106 caesium atoms are recaptured in the UHV MOT.  相似文献   

4.
A continuous cold atomic beam from a magneto-optical trap   总被引:3,自引:0,他引:3  
We have developed and characterized a new method to produce a continuous beam of cold atoms from a standard vapour-cell magneto-optical trap (MOT). The experimental apparatus is very simple. Using a single laser beam it is possible to hollow out in the source MOT a direction of unbalanced radiation pressure along which cold atoms can be accelerated out of the trap. The transverse cooling process that takes place during the extraction reduces the beam divergence. The atomic beam is used to load a magneto-optical trap operating in an ultra-high vacuum environment. At a vapour pressure of 10-8mbar in the loading cell, we have produced a continuous flux of 7×107atoms/s at the recapture cell with a mean velocity of 14 m/s. A comparison of this method with a pulsed transfer scheme is presented. Received 19 February 2001  相似文献   

5.
We transfer cold ^87 Rb atoms from a vapour cell chamber to a spatially separated UHV magneto-optical trap (MOT) with the assistance of a red-detuned optical guiding beam and a normal push beam. Efficient optical guiding of the cold atoms is observed within a small detuning window. A pulsed optical guiding beam enhances the transfer efficiency and hence allows us to collect more atoms in UHV MOT in a shorter time, which is favourable for our experiment of achieving Bose-Einstein condensates (BEC). Besides the easy operation, another advantage of this optical guiding technique is also demonstrated such that slower atomic beams may be efficiently transferred along horizontal direction. This study is a direct application of the optical guiding technique as a powerful tool.  相似文献   

6.
以慢原子束方式进行原子转移的双磁光阱系统   总被引:2,自引:0,他引:2       下载免费PDF全文
建立了一套用于玻色-爱因斯坦凝聚实验的铷原子双磁光阱装置.从低速强源中获得慢原子束,向超高真空磁光阱进行原子转移.低速强源磁光阱与超高真空磁光阱之间可维持3个量级的压强差,超高真空磁光阱的真空度最高可达1×10-9 Pa. 慢原子束的束流通量达1×109/s. 约4×10887Rb原子被装载到超高真空磁光阱中.还讨论了两种典型情况下磁光阱中装载的最大原子数.  相似文献   

7.
We report the studies on the effect of Zeeman slower beam power on the loading rate and collision loss rate in an atomic beam loaded krypton magneto-optical trap (MOT). The results show that an increase in Zeeman slower beam power initially increases the MOT loading rate and reduces the background collision loss rate to increase the number of cold atoms in the MOT to an optimum value. With further increase in the Zeeman slower beam power, the number of cold atoms in the MOT decreases due to increased background collision loss rate and decrease in the trap loading rate. However, the cold collision loss rate is observed to remain unaffected by the variation in the Zeeman slower beam power. Therefore, the study emphasizes the need to optimize the Zeeman slower beam power to trap maximum number of cold atoms in an atomic beam loaded MOT.  相似文献   

8.
A significant enhancement in the number of cold atoms in an atomic-beam-loaded magneto-optical trap (MOT) for metastable krypton atoms is observed when hollow laser beams are used in a Zeeman slower instead of a Gaussian laser beam. In the Zeeman slower setup, a combination of two hollow laser beams, i.e., a variable-diameter hollow beam generated using a pair of axicon lenses superimposed on a fixed-diameter hollow beam, has been used to reduce the longitudinal velocity of the atoms in the atomic beam below the capture speed of the MOT. The observed enhancement in the number of atoms in the MOT is attributed to reduced destruction of the atom cloud in the MOT and increased cooling of the off-axis atoms in the atomic beam, resulting from the use of hollow beams in the Zeeman slower.  相似文献   

9.
A compact cold atom beam source based on a multistage two-dimensional magneto-optical trap (MOT) has been demonstrated and characterized. The multiple-stage design greatly reduces the overall size of the source apparatus while providing a high flux of atoms. The cold atom beam was used to load a separate MOT in ultrahigh vacuum, and we obtained an actual trap loading rate of 1.5 x 109 atoms/s while using only 20 mW of total laser power for the source. The entire source apparatus, including optics, can fit into a 4 cm x 4 cm x 13 cm volume.  相似文献   

10.
Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064~nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9± 0.3~s. Thus we provide a system where the atomic qubit can be coherently manipulated.  相似文献   

11.
Francium is one of the best candidates for atomic parity nonconservation (APNC) and for the search of permanent electric dipole moments (EDMs). APNC measurements test the weak force between electrons and nucleons at very low momentum transfers. They also represent a unique way to detect weak nucleon-nucleon interactions. EDMs are instead related to the time-reversal symmetry. Preliminary to these fundamental measurements are precision studies in atomic spectroscopy and the development of magneto-optical traps (MOT), which partially compensate for the lack of stable Fr isotopes. At LNL Legnaro, francium is produced by fusion of 100-MeV 18O with 197Au in a thick target, followed by evaporation of neutrons from the compound nucleus. Francium diffuses inside the hot target (1200 K) and is surface ionized for injection at 3 keV in an electrostatic beamline. Typically, we produce 1×106 (210Fr ions)/s for a primary flux of 1.5×1012 particles/s. We have studied Fr yields as a function of primary beam energy, intensity, and target temperature. Information on the efficiency of bulk diffusion, surface desorption and ionization is deduced. The beam then enters a Dryfilm-coated cell, where it is neutralized on a heated yttrium plate. The escape time of neutral Fr (diffusion + desorption) is approximately 20 s at 950 K, as measured with a dedicated setup. In the MOT, we use 6 orthogonal Ti:sapphire laser beams for the main pumping transition and 6 beams from a stabilized diode repumper. Fluorescence from trapped atoms is observed with a cooled CCD camera, in order to reach noise levels from stray light equivalent to approximately 50 atoms. Systematic tests are being done to improve the trapping efficiency. We plan to further develop Fr traps at LNL; in parallel, we will study APNC and EDM techniques and systematics with stable alkalis at Pisa, Siena, and Ferrara.  相似文献   

12.
We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell–Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm2 and 330 mJ/cm2, the atomic beam is composed exclusively of ground-state atoms. For higher fluences ions and excited atoms are generated.  相似文献   

13.
程存峰  杨国民  蒋蔚  潘虎  孙羽  刘安雯  成国胜  胡水明 《物理学报》2011,60(10):103701-103701
高强度的亚稳态惰性原子束流在原子分子物理实验研究中具有广泛的应用.使用射频电离方法和激光横向冷却技术制备了高强度的亚稳态氪原子束流,并使用数值模拟方法对横向冷却激光场中的原子径迹进行了分析.通过激光诱导荧光光谱方法测量原子束的束流特性,结果显示,横向冷却后在束流源下游230 cm处的原子束流强度达1.6atoms/(s*sr),束流强度提高了两个量级.利用这种高强度原子束流,我们成功囚禁了1.3×1010个亚稳态84Kr原子,同时冷原子装载速率达到了3.0×1011atoms/s;并利用该装置成功地实现了高亮度的亚稳态氩原子束和原子阱. 关键词: 横向冷却 原子束 原子阱 惰性气体  相似文献   

14.
We report the capture of cold strontium atoms in a magneto-optical trap (MOT) at a rate of 4 x 10(10) atoms/s. The MOT is loaded from an atomic beam decelerated by a Zeeman slower operating with a focused laser beam. The 461-nm laser, used for both cooling and trapping, was generated by sum-frequency mixing in a KTP crystal with diode lasers at 813 nm and a Nd:YAG laser at 1064 nm. As much as 115 mW of blue light was obtained.  相似文献   

15.
We report on a slow guided atom laser beam outcoupled from a Bose–Einstein condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser beam can be controlled by compensating the gravitational acceleration and we reach residual accelerations as low as 0.0027 g. The outcoupling mechanism allows for the production of a constant flux of 4.5×106 atoms per second and due to transverse guiding we obtain an upper limit for the mean beam width of 4.6 μm. The transverse velocity spread is only 0.2 mm/s and thus an upper limit for the beam quality parameter is M 2=2.5. We demonstrate the potential of the long interrogation times available with this atom laser beam by measuring the trap frequency in a single measurement. The small beam width together with the long evolution and interrogation time makes this atom laser beam a promising tool for continuous interferometric measurements.  相似文献   

16.
陈姝  李营营  颜学术  薛洪波  冯焱颖 《中国物理 B》2017,26(11):113703-113703
We investigate experimentally and numerically the quantitative dependence of characteristics of a low-velocity intensity source(LVIS) of atomic beam on light parameters, especially the polarization of cooling laser along the atomic beam axis(pushing beam). By changing the polarization of the pushing beam, the longitudinal mean velocity of a rubidium atomic beam can be tuned continuously from 10 to 20 m/s and the flux can range from 3 × 10~8 to 1 × 10~9 atoms/s, corresponding to the maximum sensitivity of the velocity with respect to the polarization angle of 20(m/s)/rad and the mean sensitivity of flux of 1.2 × 10~9(atoms/s)/rad. The mechanism is explained with a Monte-Carlo based numerical simulation method, which shows a qualitative agreement with the experimental result. This is also a demonstration of a method enabling the fast and continuous modulation of a low-velocity intense source of cold atomic beam on the velocity or flux,which can be used in many fields, like the development of a cold atomic beam interferometer and atom lithography.  相似文献   

17.
We report on a compact high-efficiency Cs slow atom beam source based on a retro-reflected two-dimensional magneto-optical trap (2D MOT). Employing two laser beams in an angled retro-reflected setup, we achieve 3D MOT loading rates greater than 8?×?109?atoms/s using only 20?mW of total laser power for the source.  相似文献   

18.
We report on a simple scheme to efficiently load an on-axis magneto-optical trap (MOT) from a decelerated atomic beam, which avoids perturbation by radiation pressure from the decelerating laser. This has been tightly focused near the MOT center, with a waist size much smaller than the atomic cloud. For comparison, and in order to test the efficiency of this non-optimum deceleration geometry we have employed a second, independent decelerating laser, with a profile mode matched to the atomic beam. Using a Calcium MOT, good performance has been achieved and for an oven temperature of 580 °C we loaded 1.2(2)×107 atoms in 16(1)ms. The technique described here has been essential for the sensitive detection of cold collisions, which represent minor losses in MOTs of alkaline-earth metal elements (R.L. Cavasso-Filho, A. Scalabrin, D. Pereira, F.C. Cruz: Phys. Rev. A, 67, 021402(R) (2003)). PACS 32.80.Pj, 39.25.+k, 39.10.+j  相似文献   

19.
王晓佳  冯焱颖  薛洪波  周兆英  张文栋 《中国物理 B》2011,20(12):126701-126701
We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam, the atoms are pushed out continuously with low velocities and a high flux. The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4×109 s-1 by increasing the intensity of the trapping beams. We also present a simple model for describing the dependence of the beam performance on the magneto-optical trap trapping laser intensity and the detuning.  相似文献   

20.
光钟物理系统的小型化是制约可搬运光钟及空间冷原子光钟发展的重要因素.主要介绍了小型化锶原子光钟物理系统的研制实验.采用真空腔内置反亥姆霍兹线圈,构建一个小电流、低功耗及小体积的磁光阱.实验中测得真空线圈通电电流仅为2 A时,磁光阱中心区域轴向磁场梯度可达到43 Gs/cm,完全满足锶原子多普勒冷却与俘获对磁场梯度的要求.目前已经成功将锶原子光钟物理系统体积缩小至60 cm×20 cm×15 cm,约为实验室原锶光钟物理系统体积的1/10,并且实现了锶原子的一级冷却,测得俘获区冷原子团的直径为1.5 mm,温度约为10.6 mK.锶同位素~(88)Sr和~(87)Sr的冷原子数目分别为1.6×10~6和1.5×10~5.重抽运激光707和679 nm的加入,消除了冷原子在~3P_2和~3P_0两能态上的堆积,最终可将冷原子数目提高5倍以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号