首页 | 本学科首页   官方微博 | 高级检索  
     检索      

小型化锶光钟物理系统的研制
引用本文:赵芳婧,高峰,韩建新,周驰华,孟俊伟,王叶兵,郭阳,张首刚,常宏.小型化锶光钟物理系统的研制[J].物理学报,2018,67(5):50601-050601.
作者姓名:赵芳婧  高峰  韩建新  周驰华  孟俊伟  王叶兵  郭阳  张首刚  常宏
作者单位:1. 中国科学院国家授时中心, 时间频率基准重点实验室, 西安 710600;2. 中国科学院大学天文与空间科学学院, 北京 100049
基金项目:国家自然科学基金青年科学基金(批准号:11603030)、国家自然科学基金(批准号:11474282,61775220)、中国科学院战略性先导科技专项(B类)(批准号:XDB21030700)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC004)资助的课题.
摘    要:光钟物理系统的小型化是制约可搬运光钟及空间冷原子光钟发展的重要因素.主要介绍了小型化锶原子光钟物理系统的研制实验.采用真空腔内置反亥姆霍兹线圈,构建一个小电流、低功耗及小体积的磁光阱.实验中测得真空线圈通电电流仅为2 A时,磁光阱中心区域轴向磁场梯度可达到43 Gs/cm,完全满足锶原子多普勒冷却与俘获对磁场梯度的要求.目前已经成功将锶原子光钟物理系统体积缩小至60 cm×20 cm×15 cm,约为实验室原锶光钟物理系统体积的1/10,并且实现了锶原子的一级冷却,测得俘获区冷原子团的直径为1.5 mm,温度约为10.6 mK.锶同位素~(88)Sr和~(87)Sr的冷原子数目分别为1.6×10~6和1.5×10~5.重抽运激光707和679 nm的加入,消除了冷原子在~3P_2和~3P_0两能态上的堆积,最终可将冷原子数目提高5倍以上.

关 键 词:小型化锶光钟  内置磁场线圈  空间冷原子光钟
收稿时间:2017-12-04

Miniaturization of physics system in Sr optical clock
Zhao Fang-Jing,Gao Feng,Han Jian-Xin,Zhou Chi-Hua,Meng Jun-Wei,Wang Ye-Bing,Guo Yang,Zhang Shou-Gang,Chang Hong.Miniaturization of physics system in Sr optical clock[J].Acta Physica Sinica,2018,67(5):50601-050601.
Authors:Zhao Fang-Jing  Gao Feng  Han Jian-Xin  Zhou Chi-Hua  Meng Jun-Wei  Wang Ye-Bing  Guo Yang  Zhang Shou-Gang  Chang Hong
Institution:1. Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;2. School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The compactness and robustness of the vacuum setup are the major limitations to develop transportable and space-borne optical clocks. The first step in the engineering challenge is to reduce volume and weight with respect to a stationary system. In this paper, we present the realization of a miniaturized vacuum system by building two anti-Helmholtz coils inside the vacuum magneto-optical-trap (MOT) chamber. The built-in coils are specially designed to minimize the distance between the coils, and in this way it is possible to reduce the current needed to realize a typical magnetic gradient of 40 Gs/cm required for blue MOT. When the MOT coil current is 2 A, an axial magnetic field gradient of 43 Gs/cm is obtained in the center of the MOT, which is enough for the first stage Doppler cooling. This novel design allows us to reduce size, weight and power consumption with respect to a traditional laser cooling apparatus, and simultaneously avoid complicating the water cooling equipment. Our vacuum system has a size of 60 cm×20 cm×15 cm, about 1/10 of the original system in the laboratory. In addition, the circularly polarized Zeeman slowing laser is sent to counter propagating atomic beam, and atoms at a few hundred meters per second are now routinely slowed down to velocities of tens of meters per second. As a result, about 16.4% of the atoms are actually trapped into the blue MOT. The final temperature of the blue MOT is approximately 10.6 mK, and the internal diameter is 1.5 mm by observing the expansion of the atoms from the MOT. The populations of cold atoms finally trapped in the MOT are 1.6×106 of 88Sr and 1.5×105 of 87Sr. The 1S01P1 transition used for the blue MOT is not perfectly closed due to the decay channel of the 5p1P1 → 4d1D2, and a part of atoms are stored in the 3P2 and 3P0 states. To prevent the atoms from losing, 707 and 679 nm repumping lasers are employed to recycle these atoms in the 3P1 state, and then the atoms decay to the ground state 1S0. Now the typical number of loaded atoms dramatically increases by 5 times compared with before. The slowing efficiency of Zeeman slower is also optimized for the operation with deceleration related to the parameter of magnet length, which uses more effectively available magnetic field distribution, in contrast to the usual constant deceleration mode. Our future work will focus on constructing a Zeeman slower combined with permanent magnets or an electric magnet for better tuning of the magnetic field.
Keywords:compact Sr optical clock  built-in anti-Helmholtz coil  space-borne cold atom optical clock
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号