首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多烷基支链仲胺从碱性氰化液中萃取金   总被引:6,自引:0,他引:6  
余建民  李奇伟  陈景 《应用化学》2001,18(4):276-280
研究了多烷基支链促胺从碱性氰化液中萃取金,考察了平衡时间、水相初始pH值、金浓度、离子强度、温度、萃取剂浓度、稀释剂、相比等因素对金萃取率的影响,绘制了萃取等温线,测定了金的饱和容量,考察了萃取体系对银(Ⅰ)、铁(Ⅱ)、铜(Ⅰ)、镍(Ⅱ)、锌(Ⅱ)的萃取性能,计算出了金与这些杂质元素的分离系数,研究了负载有机相中金的反萃,结果表明,该萃取体系在pH5-11范围内对Au(CN)2^-有较高的萃取率和选择性,pH1/2=11.7,可用于碱性氰化液中金的萃取分离。  相似文献   

2.
研究了胍类萃取剂Lix782 5对碱性氰化液中金的萃取 ,考察了平衡时间、水相pH值、金初始浓度、离子强度、有机相中Lix782 5浓度、稀释剂的种类、添加剂浓度、温度、相比等因素对金萃取率的影响 ,测定了金的饱和容量 ,研究了Lix782 5对银、铁、铜、镍氰配合物的萃取 ,计算出了金与这些杂质元素之间的分离系数。结果表明 :萃取体系 1 % (v v)Lix782 5— 5% (v v)ROH—C1 2H2 6从碱性氰化物中萃取金具有萃取动力学速度快 ( <5min)、分相快、界面清晰、易反萃、选择性高等优点。金萃取容量可达 3 1 4g L ,并且用合成料液及实际料液进行了金的萃取分离试验 ,得到了较好的结果  相似文献   

3.
N1923从碱性氰化液中萃取金(Ⅰ)的研究   总被引:6,自引:0,他引:6  
采用放射性同位素198Au示踪法研究了伯胺N1923和TBP从碱性氰化液中萃取金(Ⅰ),考察了酸化率、水相pH值、萃取剂浓度等对萃取率的影响,以及NaOH对载金有机相的反萃作用。结果表明,TBP含量大于20%,酸化的N1923与KAu(CN)2摩尔比值在11时,金能够完全被萃取。载金有机相可采用0.1mol·L-1的NaOH溶液定量反萃。机理研究表明,伯胺和TBP萃取Au(CN)2-,符合BC类协同萃取机理。当金浓度大于10g·L-1时,在萃取有机相中形成纳米级的聚集体。  相似文献   

4.
从碱性氰化液中萃取低浓度Au(Ⅰ)的放大实验   总被引:1,自引:0,他引:1  
从碱性氰化液中溶剂萃取分离Au(Ⅰ)是冶金领域研究的热点,一般金浓度为g/L级和毫升规模实验研究,而矿山的氰化槽浸液或堆浸液中金浓度,一般为1~50ppm,本文利用专门设计的搅拌萃取柱,研究了CTAB/TBP(十六烷基三甲基溴化铵/磷酸三丁酯)体系对20L规模低浓度金的萃取,以及载金有机相的反萃取行为。  相似文献   

5.
基于溴代十六烷吡啶(CPB)与Au(CN)2-络阴离子生成的离子缔合物可被反相键合硅胶固相萃取柱萃取、富集,建立了一种从碱性氰化液中高富集倍数固相萃取金的方法。在碱性介质中,溴代十六烷吡啶(CPB)与Au(CN)2-络阴离子生成离子缔合物,该离子缔合物可被反相键合硅胶固相萃取柱萃取、富集,富集的离子缔合物可用乙醇洗脱,洗脱液经处理后用分光光度法测定,反相键合硅胶固相萃取柱不被破坏而且可重复使用。方法用于从碱性氰化液中固相萃取痕量金,萃取回收率可超过98%,研究了反向固相萃取金的机理,同时提出了一种从碱性氰化液中提取金的新工艺。  相似文献   

6.
本文合成了4种新型不对称酰胺荚醚萃取剂:N,N′-二甲基-N,N′-二苯基-3-氧戊二酰胺(DMDPhDGA)、N,N′-二甲基-N,N′-二己基-3-氧戊二酰胺(DMDHDGA)、N,N′-二甲基-N,N′-二辛基-3-氧戊二酰胺(DMDODGA)、N,N′-二甲基-N,N′-二癸基-3-氧戊二酰胺(DMDDDGA)。以氯仿为稀释剂,研究了N,N,N′,N′-四丁基-3-氧戊二酰胺(TBDGA)及上述4种萃取剂从硝酸体系中萃取Gd(Ⅲ)的反应机理,得出萃取能力顺序为:DMDHDGA>DMDDDGA>DMDODGA>DMDPhDGA>TBDGA。考察了水相酸度和萃取剂浓度对萃取分配比的影响,得出萃合物中有3个萃取剂分子同时参与配位;并结合红外光谱解释了萃取剂结构与萃取性能的关系。  相似文献   

7.
在不同稀释剂体系中研究了N,N,N′,N′-四丁基-3-氧戊二酰胺(TBDGA)从硝酸介质中萃取Gd髥离子的性能及反应机理。考察了水相硝酸浓度、萃取剂浓度及温度对其萃取性能的影响。实验表明在不同稀释剂中TBDGA对Gd髥的萃取能力为:二甲苯四氯化碳甲苯氯仿,分配比在所研究酸度范围内都随硝酸浓度的增加而增大。在不同稀释剂中萃取机理是相同的,萃合物的组成为Gd(NO3)3·3TBDGA;萃取Gd(Ⅲ)离子的反应为放热反应,低温有利于萃取。萃合物的IR光谱表明羰基氧与Gd(Ⅲ)发生配位。  相似文献   

8.
采用放射性同位素198Au示踪法研究了伯胺N1923和TBP从碱性氰化液中萃取金(Ⅰ),考察了酸化率、水相pH值、萃取剂浓度等对萃取率的影响,以及NaOH对载金有机相的反萃作用。结果表明,TBP含量大于20%,酸化的N1923与KAu(CN)2摩尔比值在1:1时,金能够完全被萃取。载金有机相可采用0.lmol·L-1的Na0H溶液定量反萃。机理研究表明,伯胺和TBP萃取Au(CN)2-,符合BC类协同萃取机理。当金浓度大于10g·L-1时,在萃取有机相中形成纳米级的聚集体。  相似文献   

9.
研究了乙醇-硫酸铵双水相体系对Cr(Ⅵ)的选择性萃取分离效率及其原子吸收光谱法(AAS)分析. 配制乙醇-硫酸铵双水相体系, 并考察不同种类盐, 盐用量, 酸度和时间对体系萃取分离效率的影响, 用AAS法测定体系对以重铬酸根形式存在的Cr(Ⅵ)的选择性萃取分离效率, 通过乙醇和水相的AAS法测定选择了最佳萃取分离条件, 在pH为4的酸性介质中把水相中的Cr(Ⅵ)萃取到乙醇相而Cr(Ⅲ)留在水相中, 使两种形态的铬彼此分离, 通过对醇相Cr(Ⅵ)和水相Cr(Ⅲ)的 AAS测定, 得到最佳测定条件及体系对Cr(Ⅵ)的萃取率为: 双水相体系的体积为10.0 mL, V(EtOH)∶V(H2O)=2∶3, (NH4)2SO4的质量为1.7 g, pH 4, Cr(Ⅵ)萃取率为90% 以上, Cr(Ⅲ)回收率为98%~108%. 本法可用于铬的形态分析.  相似文献   

10.
含氟硫酸体系HEH/EHP萃取铈(Ⅳ)的动力学研究   总被引:1,自引:0,他引:1  
采用层流恒界面池法研究了2-乙基己基膦酸单2-乙基己基酯(HEH/EHP)萃取含氟复杂硫酸体系中铈(Ⅳ)的动力学。考察了搅拌速度、水相金属离子浓度、萃取剂浓度、酸度和温度对萃取速率的影响。试验结果表明:萃取反应为一级反应,萃取反应的正向表观活化能为50.8 kJ·mol-1,属于化学反应控制。试验得到萃取动力学方程为R=k[Ce(HF)(HSO4-)3+]1.05[H2A2]2.07[H+]-2.43,并探讨了反应机制。  相似文献   

11.
合成了N,N′-二(十二烷基)乙二胺(用R2en表示),并用元素分析,红外光谱ESI及1HNMR等方法对其组成及结构进行了分析。研究了在微酸性介质中对铬(Ⅵ)的萃取行为,考察了初始水相酸度、铬(Ⅵ)浓度、R2en浓度、相比及温度等因素对铬(Ⅵ)萃取率的影响。用等摩尔系列法确定了R2en与Cr2O72-的摩尔比为2∶1。用1.0 mol.L-1氢氧化钠溶液对含铬(Ⅵ)有机相进行反萃取,一次反萃率达98.11%。经反萃后的有机相可再循环利用。  相似文献   

12.
新型功能化离子液体的合成及液-液萃取钕(Ⅲ)的研究   总被引:2,自引:0,他引:2  
研究了新型功能化离子液体1-戊基-3-(3-乙基苯基膦酰基)丙基咪唑双(三氟甲基磺酰基)亚胺盐的合成及对Nd(Ⅲ)的萃取性能,考察了水相酸度、萃取时间、杂质离子等对萃取性能的影响。结果表明,在0.13g该离子液体中,萃取时间为30min,5 mL pH 9.0的Nd(Ⅲ)溶液浓度在0.1~5.0μg/mL时,其线性回归方程为Y=-29352+2.423×106ρ(μg/mL),线性相关系数和最低检测限分别为0.9982和0.0025μg/mL。同时研究了离子液体的回收利用,在5%HNO3介质中洗脱30 min,Nd(Ⅲ)洗脱率达86%以上,回收后的离子液体可再利用。  相似文献   

13.
硫酸铵-3,5-二溴水杨基荧光酮-乙醇体系萃取分离钼   总被引:3,自引:0,他引:3  
在含有一定浓度硫酸铵的条件下,乙醇水溶液能形成盐水与乙醇液-液两相,研究了Mo(Ⅵ)与3,5二溴水杨基荧光酮(DBSAF)形成的配合物在乙醇盐水萃取体系液-液两相中的分配行为.试验表明,在PH 1~6范围内,硫酸铵浓度为350 g·L-1,试液中乙醇与水的体积比为3比7,1×10-4mol·L-1 DBSAF溶液加入量为2 mL及试液总体积为10 mL的条件下,Mo(Ⅵ)均保持很高的萃取率,用控制酸度的方法实现了Mo(Ⅵ)与常见过渡元素离子Co(Ⅱ)、Zn(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)、Mn(Ⅱ)、Fe(Ⅲ)、W(Ⅵ)的定量分离,试验了钼(Ⅵ)与上述各共存离子的分离,钼(Ⅵ)的萃取率均大于97%,而其他共存离子的萃取率均小于5%.  相似文献   

14.
酸法浸出石煤提钒因具有环保、金属收率高的特点而备受关注,但同时进入母液的铁(高含量的Fe3+)严重影响了钒的富集和产品生产。 对此,本文提出一种基于“抑制-萃取”效应的钒/铁分离混合萃取体系(P507(2-乙基己基磷酸-单2-乙基己基酯)+ N235(三辛/癸烷基叔胺)+磺化煤油),并详细研究了各因素对钒铁分离和钒富集的影响规律。 结果表明,P507是钒铁萃取的主体,N235不具萃Fe3+能力,是产生抑制铁萃取的关键因素,其浓度越高铁萃取率越低;对于酸度较高(pH≤0.4)的原料液钒/铁的分离效果仍较好,这表明了该“抑制-萃取”混合萃取体系对高酸度浸出液钒/铁分离的适用性。 采用氨水从负载有机相中反萃取钒铁,当氨水浓度为6 mol/L时钒的反萃率99%以上,25 ℃,V(有机相)∶V(水相)=2∶1时的反萃液中钒质量浓度14.73 g/L,铁质量浓度小于0.022 g/L,m(V)/m(Fe)=669.5。 该“抑制-萃取”法分离钒/铁操作简单、经济高效,极具工业化前景。  相似文献   

15.
以氯化钠-碘化钾-丙醇体系萃取分离金(Ⅲ)   总被引:3,自引:0,他引:3  
试验在氯化钠存在下,碘化钾-丙醇体系萃取分离以AuI-4络阴离子状态存在的金(Ⅲ)的最佳条件,结果表明:当溶液中碘化钾、氯化钠和丙醇的浓度分别为每升中0.3 g,200 g和300 mL,且溶液的酸度为pH 3.5时,能使AuI-4定量萃取,即在总体积为10 mL的溶液中,含碘化钾3 mg,氯化钠2 g和丙醇3 mL.萃取分离50 μg金(Ⅲ)时,1 mg铁(Ⅱ)、镍(Ⅱ)、锰(Ⅱ)、铝(Ⅲ)、锌(Ⅱ)、钴(Ⅱ)、镓(Ⅲ)等离子基本不被萃取,而与上述离子分离,金(Ⅲ)的萃取率达99.7%以上.  相似文献   

16.
建立了一种用十二烷基二甲基苄基氯化铵(BDMDAC)从碱性氰化液中固相萃取金的新方法:在碱性介质中,十二烷基二甲基苄基氯化铵溶液(BDMDAC)与Au(CN)2-络阴离子生成离子缔合物,该离子缔合物可被反相键合硅胶固相萃取柱萃取、富集,用乙醇洗脱,反相键合硅胶固相萃取柱可重复使用。该方法用于从碱性氰化液中固相萃取痕量金,萃取回收率可超过98%。  相似文献   

17.
在(30±0.5)℃下,用层流恒界面池研究了铒在HBTMPTP-正庚烷-0.2mol/L(H,Na)Ac萃取体系中的传质动力学.测定了该体系的界面张力,考察了水相酸度、萃取剂浓度、氯离子浓度、温度和比界面对萃取速率的影响.实验表明,在本实验条件下,萃取过程属于扩散控制过程.Cyanex302中的杂质具有动力学的协萃作用.  相似文献   

18.
提出一种新的手性分离技术双相(O/W)识别手性萃取. 研究了α-环己基扁桃酸对映体在D(L)-酒石酸异丁酯1,2-二氯乙烷有机相和β-环糊精衍生物水相萃取体系中的分配行为; 考察了β-环糊精衍生物种类和浓度、酒石酸酯构型和浓度、水相pH 值等因素对萃取性能的影响. 实验结果表明, 双相(O/W)识别手性萃取具有很强的手性分离能力, 羟丙基β-环糊精、羟乙基β-环糊精、甲基β-环糊精均对S-α-环己基扁桃酸对映体的识别能力大于对R-α-环己基扁桃酸对映体的识别能力, 其中以羟丙基β-环糊精的识别能力最强; 而D-酒石酸异丁酯的识别能力刚好相反; 在羟丙基β-环糊精和D-酒石酸异丁酯萃取体系中, α-环己基扁桃酸外消旋体一次萃取分离后, 水相中S-对映体e.e.%达到27.6%, R-和S-对映体的分配系数(kR和kS)分别为2.44和0.98, 分离因子(α)达2.49; 同时pH值和萃取剂浓度对手性分离能力有显著影响. 双相(O/W)识别手性萃取对外消旋体化合物的制备性分离有着十分重要的意义.  相似文献   

19.
以咪唑类离子液体1-癸基-3-甲基咪唑三氟磺酰亚胺盐[C10mim][NTf2]为萃取剂,研究了其对铈(Ⅳ)的萃取行为,分别考察了萃取时间、料液浓度、硝酸浓度、离子液体咪唑环上烷基链长、无机盐浓度和温度对萃取过程的影响。 热力学计算表明,萃取过程是自发的放热过程。 推测可能的萃取机理是阴离子交换机理。 对萃取液进行了反萃考察,在硫酸浓度为1.0 mol/L时,反萃率为85.1%。  相似文献   

20.
建立了一种用十二烷基二甲基苄基氯化铵(BDMDAC)从碱性氰化液中固相萃取金的新方法:在碱性介质中,十二烷基二甲基苄基氯化铵溶液(BDMDAC)与Au(CN)2-络阴离子生成离子缔合物,该离子缔合物可被反相键合硅胶固相萃取柱萃取、富集,用乙醇洗脱,反相键合硅胶固相萃取柱可重复使用。该方法用于从碱性氰化液中固相萃取痕量金,萃取回收率可超过98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号