首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2/Fe2O3 core-shell nanocomposition film has been fabricated via two-step method. TiO2 nanorod arrays are synthesized by a facile hydrothermal method, and followed by Fe2O3 nanoparticles deposited on TiO2 nanorod arrays through an ordinary chemical bath deposition. The phase structures, morphologies, particle size, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and ultraviolet-visible (UV-vis) spectrophotometer. The results confirm that Fe2O3 nanoparticles of mean size ca. 10 nm coated on the surface of TiO2 NRs. After depositing Fe2O3, UV-vis absorption property is induces the shift to the visible-light range, the annealing temperature of 600 °C is the best condition for UV-vis absorption property of TiO2/Fe2O3 nanocomposite film, and increasing Fe content, optical activity are enhanced one by one. The photoelectrochemical (PEC) performances of the as-prepared composite nanorods are determined by measuring the photo-generated currents under illumination of UV-vis light. The TiO2 NRs modified by Fe2O3 show the photocurrent value of 1.36 mA/cm2 at 0 V vs Ag/AgCl, which is higher than those of unmodified TiO2 NRs.  相似文献   

2.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

3.
Ag/TiO2 sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. TiCl4 was converted to Ti(OH)4 gel. The Ag/TiO2 sol was prepared by a process where H2O2 was added and then heated at 90–97 °C. After condensation reaction and crystallization, a transparent sol with suspended Ag/TiO2 was formed. Ag/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, contact angle analysis, and X-ray photoelectron spectroscopy. The photocatalytic properties of Ag/TiO2 film were evaluated by degradation of methylene blue in aqueous solution under UV light irradiation. The suspended Ag/TiO2 particles were rhombus primary particles with the major axis ca. 40 nm and the minor axis ca. 10 nm. Ag nanoparticles were well dispersed on TiO2 and the particle size was only 1–2 nm. Ag could restrain the recombination of photo-generated electrons and holes effectively. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The thin film had strong hydrophilicity after being illuminated by UV light. Ag/TiO2 film showed a significant increase in photocatalytic activity compared to the TiO2 film. The high amount of surface hydroxyls on Ag/TiO2 film also played an important role in its photocatalytic activity.  相似文献   

4.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

5.
Anatase TiO2 nanoparticles incorporated DLC films were successfully deposited on single crystalline silicon substrates by the electrolysis of TiO2-methanol solution under ambient atmospheric pressure and low temperature. Anatase TiO2 nanoparticles were embedded into amorphous carbon matrix, forming the typical nanocrystalline/amorphous nanocomposite films, confirmed by transmission electron microscopy (TEM). TiO2 incorporation effectively increased the sp3-hybridized carbon concentration in the composite film, and further regulated the microstructure and surface morphology. Furthermore, the static contact testing completely displayed, TiO2 incorporation got the composite films super-hydrophilic, which fundamentally improved the wetting ability of DLC film.  相似文献   

6.
Porous organic carbon-doped titania (C-TiO2) nanomaterials and their composites with Ag nanoparticles (Ag/C-TiO2) were synthesized by an eggshell membrane templating method, and their structural and photocatalytic properties were systematically characterized. These nanomaterials, exhibiting a macroscopic morphology of a thin film, are composed of interwoven tubes, and the tube wall consists of nanocrystals. The doped organic carbon was composed of the active carbon and carbonate species, which could form a layer around the surface of TiO2 nanoparticles, while the silver was incorporated into Ag/C-TiO2 composites as separated Ag nanoparticles. The degradation of methylene blue under visible light irradiation was employed to evaluate the photocatalytic activity of these as-prepared TiO2-based materials. Both C-TiO2 and Ag/C-TiO2 nanomaterials showed higher photocatalytic activity than pure TiO2 material–commercial Degussa P25. These results can be accounted for the coupling effect of the incorporation of carbon species and Ag nanoparticles.  相似文献   

7.
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed.  相似文献   

8.
李立群  刘爱萍  赵海新  崔灿  唐为华 《物理学报》2012,61(10):108201-108201
采用电化学方法在导电的ITO/TiO2 薄膜上沉积了棕红色CdSe薄膜, 并制得TiO2/CdSe多层膜体系,研究了多层膜的微结构和光电化学性能. 实验表明, CdSe薄膜沿着(111)方向择优生长, 多层膜结构的厚度和紫外-可见光吸收强度随着沉积层数的增加而增加. 通过测定多层膜电极的光电化学性能表明, 二层膜体系的开路电压和短路电流密度最大,光电化学性能最好.  相似文献   

9.
夏峥嵘  李荣青 《光子学报》2012,41(2):166-169
利用新合成的复合纳米结构银/二氧化钛核壳纳米颗粒,研究了金属银纳米颗粒对碲化镉纳米晶层荧光的增强情况.结果表明,这种新型复合金属纳米结构能极大地增强发光纳米晶层的荧光强度.银/二氧化钛核壳纳米颗粒是以水合肼、硝酸银和四异丙氧基钛为原材料,利用胶体化学法在水溶液中合成.透射电子显微镜图片表明这种新合成的银/二氧化钛纳米材料基本上呈球形,有较为明显的核壳结构,中间黑色的核是银纳米颗粒,外层颜色较浅部分是二氧化钛壳层.另外,包裹二氧化钛壳层后,银纳米颗粒的表面等离子吸收带从409 nm红移至430 nm,也证实了这种新型核壳纳米材料的形成.将此合成方法得到的银/二氧化钛纳米颗粒和碲化镉纳米晶用旋转涂覆方法进行直接组合后,得到了银纳米颗粒对碲化镉纳米晶荧光的明显增强,并对其增强的物理过程进行了讨论.这种能够增强荧光团发光的新型复合银纳米结构将在发光器件、荧光成像、生物探测等方面具有一定的应用价值.  相似文献   

10.
This paper investigated the gaseous formaldehyde degradation by the amine-functionalized SiO2/TiO2 photocatalytic films for improving indoor air quality. The films were synthesized via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and 3-aminopropyltrimethoxysilane (APTMS). The physicochemical properties of prepared photocatalysts were characterized with N2 adsorption/desorption isotherms measurement, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT/IR). The effect of amine-functional groups and the ratio of MTMOS/APTMS precursors on the formaldehyde adsorption and photocatalytic degradation were investigated. The results showed that the formaldehyde adsorption and photocatalytic degradation of the APTMS-functionalized SiO2/TiO2 film was higher than that of SiO2/TiO2 film due to the surface adsorption on amine sites and the relatively high of the specific surface area of the APTMS-functionalized SiO2/TiO2 film (15 times higher than SiO2/TiO2). The enhancement of the formaldehyde degradation of the film can be attributed to the synergetic effect of adsorption and subsequent photocatalytic decomposition. The repeatability of photocatalytic film was also tested and the degradation efficiency was 91.0% of initial efficiency after seven cycles.  相似文献   

11.
以氧化石墨和TiO2溶胶为前驱物,结合絮凝与水热技术制备了TiO2纳米晶/石墨烯复合物,表征了产物的结构、形貌、孔隙率、光谱吸收性质. 结果表明:TiO2纳米晶的存在一定程度上阻止了石墨烯片层的重组,TiO2纳米晶/石墨烯复合物较单纯TiO2材料具有更强的吸光性能、对亚甲基蓝分子更强的吸附性能以及更高的电荷分离效率. 在紫外光和太阳光下,TiO2纳米晶/石墨烯复合物对亚甲基蓝的光催化降解效率均高于P25和纯TiO2.  相似文献   

12.
The TiO2/p-Si/Ag, graphene (GNR) doped TiO2/p-Si/Ag and multi-walled carbon nanotube (MWCNT) doped TiO2/p-Si/Ag heterojunction devices were fabricated by electrospinning technique at same conditions. Their structural, morphological properties, thermal analyses (TGA), and capacitance voltage characteristics were studied and compared. The undoped, GNR and MWCNT doped TiO2 structures obtained successfully according to XRD measurements. Morphological properties of the undoped, GNR and MWCNT doped TiO2 composite structures have rod or ribbon like structures. The TGA result confirmed the GNR and MWCNT doped TiO2 structures. The C-V and G-V measurements were employed for electrical characterization of the TiO2/p-Si/Ag, GNR doped TiO2/p-Si/Ag and MWCNT doped TiO2/p-Si/Ag devices for various frequencies at room temperatures. The results imparted that the capacitance and conductance behaviors of all devices are strong functions of the frequency and voltage. The electrical parameters were calculated from C−2-V plots of the heterojunction devices and compared for three devices. The transient photocapacitance plots revealed that the devices can be employed for optical communication applications.  相似文献   

13.
The novel nanostructured F-containing TiO2 (F-TiO2) sphere was directly synthesized on the surface of Ti foil in the solution of NH4F and HCl by one-step hydrothermal approach under low-temperature condition. The samples were characterized respectively by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that the F-TiO2 sphere was hierarchical structure, which composed of porous octahedron crystals with one truncated cone, leading to a football-like morphology. XPS results indicated that F anions were just physically adsorbed on the surface of TiO2 microspheres. The studies on the optical properties of the F-TiO2 were carried out by UV-vis light absorption spectrum. The surface fluorination of the spheres, the unique nanostructure induced accessible macropores or mesopores, and the increased light-harvesting abilities were crucial for the high photoelectrochemical activity of the synthesized F-TiO2 sphere for water-splitting. The photocurrent density of the F-TiO2 sphere thin film was more than two times than that of the P25 thin film. Meanwhile, a formation mechanism was briefly proposed. This approach could provide a facile method to synthesize F-TiO2 microsphere with a special morphology and hierarchical structure in large scale.  相似文献   

14.
A tubular array of TiO2-nanotubes on a Ti substrate was used as a support for an Ag sputter-deposited layer intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples of Ag/TiO2-nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the TiO2-nanotube/Ti substrates covered with the Ag deposit. In addition, SERS spectra on a bulk electrochemically-roughened Ag reference substrate, were also measured.The SERS activity of the composite samples was strongly dependent on the amount of Ag deposit and, in some cases, was even higher than that for the Ag reference substrate. The SERS intensity vs. electrode potential dependences measured were interpreted in terms of the modified electronic structure of the Ag deposits due to the interaction of the Ag clusters with the TiO2-nanotube/Ti substrate.  相似文献   

15.
Nanostructured titanium dioxide (TiO2) thin films have been prepared on metal substrates using a facile layer-by-layer dip-coating method. The phase structure and morphologies of preparing samples were characterized by means of X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The results confirm that films are highly crystalline anatase TiO2 and free from other phases of titanium dioxide. Scanning electron microscopy (SEM) shows that the nanoparticles are sintered together to form a compact structure. The electrical properties of samples were investigated by cutternt-voltage analysis, the result indicates that a rectifying junction between the nanocrystalline TiO2 film and metal substrate was formed. The photoelectrochemical characteristics recorded under 1.5 AM illumination indicates that the as-fabricated thin film electrode possesses the highest photocurrent density at 450 °C, which is 1.75 mA/cm2 at 0 V vs. Ag/AgCl.  相似文献   

16.
In this work, TiO2-SiO2-In2O3 composite thin films on glass substrates were prepared by the sol-gel dip coating process. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF) and X-ray photoelectron spectroscopy (XPS) were used to evaluate the structural and chemical properties of the films. UV-vis spectrophotometer was used to measure the transmittance spectra of thin films. The water contact angle (WCA) of thin films during UV/vis irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that fabrication of composite film has a significant effect on transmittance and superhydrophilicity of TiO2 films.  相似文献   

17.
A facile approach to the formation of Ag/PPy composite film, through the reaction of Ag+ and pyrrole monomer, was developed with the help of synergistic effect of NH3·H2O on this reaction. Black or gray Ag/PPy film precipitated on the insert wall of the vessel within 0.5 h with this new method. The Ag/PPy composite film has good conductivity (sheet resistance: 0.28 Ω/square) and superhydrophility (contact angle of water, CAW 0°). Mechanism involved in the reaction rate acceleration was briefly discussed.  相似文献   

18.
Electrical devices involve different types of diode in prospective electronics is of great importance. In this study, p-type Si surface was covered with thin film of TiO2 dispersion in H2O to construct p-Si/TiO2/Al Schottky barrier diode (D1) and the other one with TiO2 dispersion doped with zirconium to construct p-Si/TiO2-Zr/Al diode (D2) by drop-casting method in the same conditions. Electrical properties of as-prepared diodes and effect of zirconium as a dopant were investigated. Current–voltage (IV) characteristics of these devices were measured at ambient conditions. Some parameters including ideality factor (n), barrier height (ΦB0), series resistance (Rs) and interface state density (Nss) were calculated from IV behaviours of diodes. Structural comparisons were based on SEM and EDX measurements. Experimental results indicated that electrical parameters of p-Si/TiO2/Al Schottky device were influenced by the zirconium dopant in TiO2.  相似文献   

19.
The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.  相似文献   

20.
In the present study, bovine serum albumin (BSA) was successfully covalently immobilized on the surface of anatase TiO2 film by a three-step method, i.e. application of H3PO4 chemisorption to increase surface -OH, which increases the amount of coupling 3-aminopropyl-triethoxylsilane (APTES), thus linking with BSA by imide bond using EDC/NHS/MES. There is no significant -OH group increase on rutile film when using the same method of phosphoric acid treatment, which suggest it is difficult for further chemical modification of the rutile film. After covalent immobilization of BSA on anatase film, an improved hemocompatibility of anti-platelet adhesion and aggregation in vitro could be recognized by LDH and SEM analysis. This study suggests BSA-immobilized anatase surface can serve as hemocompatibility material in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号