首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
采用共压直接成型法制备单腔体固体氧化物燃料电池(SC-SOFC),单电池结构为Ni-YSZ/YSZ/LSM,YSZ为8%(x)Y2O3稳定的ZrO2,LSM为锰酸镧锶(La0.7Sr0.3MnO3).应用扫描电子显微镜(SEM)研究了电池微观结构,结果表明:阴极和电解质之间结合紧密,LSM在阴极YSZ三维骨架上负载性能良好;YSZ电解质薄膜厚约50μm,阳极厚约600μm,阴极层厚约100μm.研究了单电池反应温度T,阴极催化剂负载层数n,甲烷和氧气混合体积比Rmix对电池输出性能的影响规律.在T=800℃、n=2、Rmix=2时,电池性能达到最佳,开路电压为0.95V,最大电流密度为130mA·cm-2,最大功率密度为30mW·cm-2.  相似文献   

2.
管状电解质支撑型固体氧化物燃料电池(SOFC)具有稳定性高、电极选择范围广、易封接等优点,很适合应用于直接碳固体氧化物燃料电池(DC-SOFC)现阶段的基础研究中。为实现管状电解质支撑型SOFC的便捷制备,本研究开发了管状YSZ(钇稳定化氧化锆)电解质支撑膜的浸渍法制备工艺。组装了电极材料为Ag-GDC(钆掺杂氧化铈)的电解质支撑型SOFC单电池。测试了单电池分别以加湿氢气和担载5%(w,质量分数)Fe的活性炭为燃料,环境空气为氧化剂的电性能。电池的开路电压接近理论值,且扫描电镜分析结果表明电解质膜致密。单电池以活性碳为燃料在800°C取得了280 m W?cm~(-2)的最大功率密度,接近其以加湿氢气为燃料的330 m W?cm~(-2)。交流阻抗谱结果表明YSZ电解质的欧姆电阻是影响电池性能的主要原因。DC-SOFC以恒电流1 A放电,运行了2.1 h,燃料利用率为36%。DC-SOFC二次装载碳燃料后的电性能几乎与初次的性能一样,表明制备的YSZ电解质支撑膜可稳定的应用于DC-SOFCs中。分析了DC-SOFC放电过程中电性能衰减的机制。  相似文献   

3.
唐玉宝  刘江 《物理化学学报》2010,26(5):1191-1194
采用注浆成型法制备了管状电解质支撑的固体氧化物燃料电池(SOFC),电解质材料为YSZ,阳极和阴极材料都采用银.将活性炭不加任何气体直接用作电池的燃料.电池的有效面积为2.5cm2,在800℃时给出最大功率为16mW,其开路电压随温度的变化与理论结果一致.此电池在30mA的恒电流下连续稳定运行了37h,通过电化学反应消耗了加入电池中碳燃料的42%(w),证明了电池的工作是可以自维持的.与使用石墨燃料的SOFC相比,此电池的运行稳定性得到了明显的提高,因为活性炭比石墨具有大得多的微孔率和表面积.电池运行37h后很快衰减,燃料烧结和燃料量减少造成碳表面积减小可能是衰减的主要原因.电化学阻抗谱测试结果表明电池的极化电阻在电池的总损耗中占主导.通过对电池反应机理进行分析,认为发生在阳极/电解质界面的CO电化学氧化反应和发生在碳燃料表面的Boudouard反应构成的循环维持了电池的运行,因此通过添加促进上述两个反应的催化剂,可提高电池的性能.  相似文献   

4.
以Ba(NO_3)_2, Ce(NO_3)_3·6H_2O, Fe(NO_3)_3·9H_2O, Co(NO_3)_2·6H_2O等为原料,通过EDTA-柠檬酸法合成出BaCe_(0.5)Fe_(0.4)Co_(0.1)O_(3-δ)(BCFC)阴极粉体,并制得烧结体,对BCFC粉体和烧结体的相组成,微观组织和氧还原过程等进行测试分析;以BCFC作阴极, Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)为电解质,NiO-SDC为阳极,组装对称电池和单电池,并进行电化学性能测试分析。实验结果表明:所合成的BCFC粉体原位产生BaCe_(0.15)Fe_(0.75)Co_(0.1)O_(3-δ)和BaCe_(0.85)Fe_(0.05)Co_(0.1)O_(3-δ)两相; BCFC在700℃时的表面氧交换系数(K_(chem))为3.8×10~(-4) cm·s~(-1)。对称电池在600℃的比表面电阻(ASR)为0.819Ω·cm~2,400 h长期性测试和10次热震循环试验后, ASR保持在1.6Ω·cm~2左右;单电池在700和650℃时的最大功率密度分别为290和204 mW·cm~(-2),对应的开路电压分别为0.80和0.82 V。初步研究结果表明BCFC应用于中温固体氧化物燃料电池具有良好的电化学性能和稳定性。  相似文献   

5.
塑性挤压成型阳极支撑管,采用真空浸涂法在阳极表面制备了均一、致密的氧化钇稳定的氧化锆电解质层,然后在电解质表面刷涂上阴极层,成功制备了阳极支撑型管状固体氧化物燃料电池.分别以氢气和氨气为燃料,考察了该管状固体氧化物燃料电池的电池性能.在800℃操作时,以氢气和氨气为燃料的电池最大输出功率密度分别为202和200 mW/cm2.表明氨气可以作为固体氧化物燃料电池的替代燃料.  相似文献   

6.
中温平板型固体氧化物燃料电池研究   总被引:1,自引:0,他引:1  
采用流延法制备Ni/YSZ阳极支撑体 YSZ电解质复合膜素坯.经等静压,共烧结而得到的复合膜,其YSZ电解质层的厚度在1530μm之间,面积大于100cm2.再将由柠檬酸盐法合成的Ce0.8Sm0.2O1.9(CSO)和固相法合成的La0.6Sr0.4CoO3(LSCO)相继沉积到YSZ膜上形成有CSO中间层的复合阴极,从而构成Ni/YSZ/CSO/LSCO的中温平板型固体氧化物燃料(单体)电池,其中Ni/YSZ为阳极,CSO是中间层,LSCO为阴极.以H2作燃料气,O2为氧化气,850℃下,该单电池开路电压达1.1V,最大输出功率密度0.2W/cm2.本文还对该单电池复数阻抗谱进行了分析讨论.  相似文献   

7.
Cu-CeO_2基阳极直接甲烷SOFC的制备及其性能   总被引:1,自引:0,他引:1  
采用干压法制备了NiO-YSZ(氧化钇稳定氧化锆)/(ZrO2)0.89(Sc2O3)0.1(CeO2)0.01(10ScSZ-1CeO2)半电池,经还原-酸溶法除去NiO制备了多孔YSZ负载致密10ScSZ-1CeO2双层结构,通过浸渍法在多孔YSZ阳极基体中引入Ce、Cu的硝酸盐制备Cu-CeO2-YSZ复合阳极,结合La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极构建了Cu-CeO2-YSZ/10ScSZ-1CeO2/LSCF单元电池.通过X射线衍射(XRD)和场发射扫描电镜(FESEM)等手段对电池单元的物相、微观结构进行表征.结果表明:还原-酸溶法制备的YSZ/10ScSZ-1CeO2双层结构的YSZ基体具有孔隙率高(64%)、孔洞连通性好的微观结构,有助于采用浸渍法引入Ce、Cu硝酸盐;10ScSZ-1CeO2电解质薄膜致密无缺陷,厚约30μm.电性能测试表明所构建单元固体氧化物燃料电池(SOFC)具有良好的电性能输出,在650℃以湿H2和CH4为燃料时的最大功率密度分别为0.29和0.09W·cm-2;在700℃以湿H2和CH4为燃料时的最大功率密度分别达到0.48和0.21W·cm-2.优良的电性能主要归功于小的电解质内阻和阴极极化电阻以及良好的阳极微观结构.  相似文献   

8.
研究了Y2O3稳定的ZrO2(YSZ)氧离子传导膜H2S固体氧化物燃料电池性能。掺杂NiS、电解质、Ag粉和淀粉制备了双金属复合MoS2阳极催化剂,掺杂电解质、Ag粉和淀粉制备了复合NiO阴极催化剂,用扫描电镜对YSZ和膜电极组装(MEA)进行了表征,比较了不同电极催化剂的性能和极化过程,考察了不同温度对电池性能的影响。结果表明,双金属复合MoS2/NiS阳极催化剂在H2S环境下比Pt和单金属MoS2催化剂稳定,复合NiO阴极催化剂比Pt性能好,在电极催化剂中加入Ag可显著提高电极的导电性;与Pt电极相比,复合MoS2阳极和复合NiO阴极催化剂的过电位较小,阳极的极化比阴极侧小;温度升高,电池的电流密度与功率密度增加,电化学性能变好。在750℃、800℃、850℃和900℃及101.13 kPa时,结构为H2S、(复合MoS2阳极催化剂)/YSZ氧离子传导膜/(复合NiO阴极催化剂)、空气的燃料电池最大功率密度分别为30 mW/cm2、70 mW/cm2、155 mW/cm2及295 mW/cm2、最大电流密度分别为120 mA/cm2、240 mA/cm2、560 mA/cm2和890 mA/cm2。  相似文献   

9.
直接碳固体氧化物燃料电池(DC-SOFC)是一种潜在的固体碳燃料高效率、低污染发电技术。本研究报道了将工业焦炭直接用作管式DC-SOFC燃料的研究。制备了电极材料为Ag-GDC(钆掺杂氧化铈)的YSZ(钇稳定化氧化锆)电解质支撑型管式固体氧化物燃料电池(SOFC)。采用拉曼光谱、扫描电镜和X射线能谱仪对焦炭燃料进行了性质表征。结果表明,焦炭燃料呈微米级的颗粒状,并含有大量对Boudouard反应有利的缺陷结构。电池以纯焦炭为燃料在850℃取得的最大功率密度为149 mW/cm~2,在碳燃料表面负载能提高Boudouard反应速率的Fe催化剂后,最大功率密度提高至217 mW/cm~2。通过电化学测试和尾气表征,分析了恒电流放电过程中电池的性能衰减机制。测试结果证明了将焦炭直接用作全固态DCSOFC的燃料产生电能的可行性。  相似文献   

10.
采用高温固相法制备了La0.75Sr0.25Cr0.5Mn0.5O3(LSCM)并利用XRD,SEM以及电化学阻抗谱(EIS)分别对粉体及电极进行研究。结果发现LSCM在C3H8-O2-N2混合气氛下能够保持很好的高温化学稳定性,且与电解质材料YSZ在1400℃空气气氛下不发生化学反应。电化学测试结果表明,阳极支撑型单室固体氧化物燃料电池Ni-YSZ|YSZ|LSCM在700℃、C3H8-O2-N2混合气氛下的短路电流密度达317 mA·cm-2,最大功率密度73 mW·cm-2。将LSCM与CGO形成梯度阴极,相同测试条件下,单室电池的短路电流密度为560 mA·cm-2,功率密度达到110 mW·cm-2,电池输出性能提高约50%。  相似文献   

11.
苏峰  徐军  夏长荣 《无机化学学报》2014,30(12):2713-2718
Ba2Co9O14(BCO)是一种新型的电子-氧离子混合导体,在氧离子导体的固体氧化物燃料电池(SOFC)中,其作为阴极材料的应用可能性已经得到证实,本工作探索BCO在质子导体SOFC中的应用可能性。采用固相反应法制备BCO粉体,研究BCO与质子导体电解质BZCY(Ba Zr0.1Ce0.7Y0.2O3-δ)之间的化学相容性,分析BCO-BZCY复合阴极在BZCY电解质上的电化学性能。当复合阴极中BCO的质量含量为70%时,阴极性能最佳,界面阻抗活化能为1.26 e V。以BCO-BZCY为阴极,Ni-BZCY为阳极,BZCY为电解质的阳极支撑型单电池,700℃时,单电池的极化阻抗为0.15Ω·cm2,最大功率密度为400 m W·cm-2。  相似文献   

12.
制备了Ag与Gd掺杂的氧化铈(GDC)复合的电极材料。采用氧化钇稳定的氧化锆(YSZ)为电解质,Ag-GDC为阴极和阳极,组装成固体氧化物燃料电池(SOFC),采用担载5%(质量分数)Fe的活性炭为SOFC的燃料,对此直接碳SOFC(DC-SOFC)的输出性能及阻抗谱进行测试,并与采用传统阴极(掺Sr的锰酸镧与YSZ的复合材料)的DC-SOFC性能进行了比较,发现Ag-GDC具有更好的性能。采用扫描电镜(SEM)对电池的微观结构进行了分析,并就其对电池性能的影响进行了分析。  相似文献   

13.
Ni-YSZ(钇稳定氧化锆)金属陶瓷普遍被用作固体氧化物燃料电池(SOFC)的阳极材料,其氧化物浆料的性质对湿法制备的SOFC的性能具有重要影响.通过zeta电位分析,研究了NiO-YSZ双分散相水系浆料的稳定性.对六种分散剂作用于NiO、YSZ表面的zeta电位进行研究,发现采用的阴离子分散剂和两性分散剂使NiO和YSZ在水中带有相反电荷而引起迅速絮凝;采用阳离子分散剂聚二烯二甲基氯化铵(PDAC)时,NiO和YSZ因带有正电荷相互排斥而稳定分散于水中,在此基础上,加入作为SOFC阳极造孔剂的石墨,采用聚乙烯吡咯烷酮(PVP)作为石墨的分散剂,制备出了NiO-YSZ-石墨的稳定水系浆料.采用此浆料通过注浆成型制得阳极支撑管,进而组装成SOFC单电池.该单电池在800°C时最大功率密度达到509 mW·cm-2;扫描电镜(SEM)分析表明电极与电解质间接触良好,阳极孔洞分布均匀.  相似文献   

14.
采用干压法制备了NiO-YSZ(氧化钇稳定氧化锆)/(ZrO2)0.89(Sc2O3)0.1(CeO2)0.01(10ScSZ-1CeO2)半电池, 经还原-酸溶法除去NiO制备了多孔YSZ负载致密10ScSZ-1CeO2双层结构, 通过浸渍法在多孔YSZ阳极基体中引入Ce、Cu的硝酸盐制备Cu-CeO2-YSZ复合阳极, 结合La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极构建了Cu-CeO2-YSZ/10ScSZ-1CeO2/LSCF单元电池. 通过X射线衍射(XRD)和场发射扫描电镜(FESEM)等手段对电池单元的物相、微观结构进行表征. 结果表明: 还原-酸溶法制备的YSZ/10ScSZ-1CeO2双层结构的YSZ基体具有孔隙率高(>64%)、孔洞连通性好的微观结构, 有助于采用浸渍法引入Ce、Cu硝酸盐; 10ScSZ-1CeO2电解质薄膜致密无缺陷, 厚约30 μm. 电性能测试表明所构建单元固体氧化物燃料电池(SOFC)具有良好的电性能输出, 在650 ℃以湿H2和CH4为燃料时的最大功率密度分别为0.29和0.09 W·cm-2; 在700 ℃以湿H2和CH4为燃料时的最大功率密度分别达到0.48 和0.21 W·cm-2. 优良的电性能主要归功于小的电解质内阻和阴极极化电阻以及良好的阳极微观结构.  相似文献   

15.
采用双层流延法制备Ni-ScSZ阳极支撑层-ScSZ电解质复合膜.在烧结的Ni-ScSZ阳极支撑层表面丝网印刷一层LSCM-CeO2阳极催化层,得到LSCM-CeO2/Ni-ScSZ功能梯度层阳极.研究表明,LSCM/CeO2比为1:3(bymass)的功能梯度层阳极Ni-ScSZ13具有较佳的性能.单电池在850℃以H2和乙醇蒸气作燃料的最大功率密度分别为710和669mW/cm2,而LSCM/CeO2为1:0(bymass)的功能梯度层Ni-ScSZ10作阳极的单电池,最大功率密度分别为521和486m W/cm2.两种阳极单电池,分别在700℃于乙醇蒸气中作长时间运行实验,X-射线能量散射分析表明Ni-ScSZ13阳极比Ni-ScSZ10阳极具有较好的抗碳沉积性能.  相似文献   

16.
采用硝酸盐-甘氨酸溶液燃烧法合成了La0.6Sr0.4Co0.2Fe0.8O3-?啄(LSCF)前驱粉体, 通过XRD、BET、FESEM及激光粒度仪等手段对粉体进行表征. 结果表明, 所合成的LSCF粉体为纯钙钛矿结构, 具有高达22.9 m2·g-1的比表面积, 粒度均匀, 平均颗粒尺寸为175 nm. 非等温烧结实验表明该粉体具有良好的低温烧结活性. 在阳极NiO-YSZ(氧化钇稳定氧化锆)负载的电解质YSZ上, 于800 ℃烧结制备LSCF阴极组成的单元电池Ni-YSZ/YSZ/LSCF, 在700 ℃下以H2作燃料时具有良好的电池性能, 最大功率密度为0.97 W·cm-2, 在0.7 V时的功率密度约达到0.83 W·cm-2. 这种无中间缓冲层的低温制备LSCF阴极方法, 简化了电池结构及其制备过程, 同时提高了电池的性能.  相似文献   

17.
邹影  王洪涛  盛良全 《化学通报》2017,80(6):558-562
用溶胶凝胶法低温(900℃,通常高温烧结温度为1400℃)制备了Ce_(0.8)Gd_(0.2)O_(2-α),并与(Li/K)_2CO_3共熔体进行复合。XRD结果表明(Li/K)_2CO_3与Ce_(0.8)Gd_(0.2)O_(2-α)复合后没有发生化学反应,SEM结果表明复合电解质致密无孔洞。考察了复合电解质在400~600℃下干燥氮气气氛中的电导率,结果表明,温度为600℃时,复合电解质的电导率达到最大值6.4×10~(-2)S·cm~(-1),高于单一CeO_2材料在相同条件下的电导率。氧分压与电导率关系曲线表明复合电解质具有良好的氧离子导电性。H_2/O_2燃料电池性能测试表明,复合电解质GDC-SG-LK在600℃开路条件下的电解质阻抗、极化阻抗分别为2.7和0.8Ω,最大输出功率密度为267mW·cm~(-2)。  相似文献   

18.
固体氧化物燃料电池(SOFCs)是一种在中高温下可以直接将储存在燃料中的化学能转换成电能的全固态电化学反应装置.因其具有能量转换效率高、环境友好、全固态结构以及可以使用碳氢化合物燃料等优点,近年来受到了广泛的关注.在诸多电极材料当中,Ni基金属陶瓷是SOFCs中最常使用的阳极材料,这是由于金属Ni具有优良的电子电导和催化性能.然而当使用碳基化合物燃料时,传统的Ni金属陶瓷阳极材料面临严重的积碳、Ni颗粒长大以及硫中毒等问题.这些问题不仅会影响SOFCs的寿命,而且还会严重地降低SOFC的商业化进程.因此,开发具有高催化活性、抗积碳的阳极材料对碳氢化合物为燃料的固体氧化物燃料电池的发展至关重要.与金属基阳极相比,氧化物阳极的热膨胀系数与电解质材料更匹配,性能的可调控性更强.铁酸锶镧(LSF)是一种分子式为ABO_3的钙钛矿结构的氧化物,在高温下具有较高的电子电导率.据报道LSF作为阴极材料时,表现出了良好的性能.但是LSF作为阳极材料时,却存在着催化性能不足的问题.我们研究了Ni掺杂的La_(0.6)Sr_(0.4)FeO_(3-δ)(LSFN),以提高其作为SOFCs阳极材料的催化性能.同时采用将LSFN在SOFC工作气氛下原位还原的方法,在LSFN颗粒表面原位生长出分布均匀的纳米颗粒.透射电镜分析结果表明该偏析的颗粒为Ni-Fe合金.有报道显示,Ni-Fe合金对碳氢化合物氧化具有良好的催化活性,所以在LSFN颗粒表面生成这种合金颗粒有利于提高阳极材料的催化活性.对于Ni-Fe合金以均匀的纳米颗粒析出的原因,还有待进一步研究.为了研究LSFN作为SOFC电极材料的性能,我们采用浸渍法将LSFN前驱体溶液浸渍到氧化钇稳定氧化锆(YSZ)一体化电池的对称多孔骨架中,经过焙烧,得到了具有对称结构的SOFC单电池.所使用的YSZ一体化骨架为中间层薄而致密,两边厚而多孔的三层结构,这种结构可以显著地降低电解质的厚度,从而达到降低单电池的阻抗的目的.这一新型对称电池结构具有如下优点:阳极表面上可能发生的硫毒化和积碳问题有可能通过将阳极和阴极反用而消除;氧化剂(空气)将冲走吸附在电极上的硫和碳粒子,从而使电极得以再生.此外,氧化还原稳定的阴极预期将提高阴极的寿命.对单电池的电化学测试结果表明,LSFN电极材料的最佳浸渍量为30wt%,这是因为较低的LSFN浸渍量((27)30wt%),不能形成连续的电子传导网络,电极的电子传导能力不足;而LSFN电极材料的浸渍量高于30wt%时则会降低电极反应的三相界面,从而影响电池的性能.在750oC下,LSFN为电极的单电池在以湿润C_3H_8为燃料时其开路电压(OCV)达到了约1.18V,高于以H_2为燃料电池的电压.以CH_4为燃料时,LSFN为电极的单电池的开路电压远高于LSF为电极的单电池.在750oC下,以C_3H_8为燃料时,LSFN和LSF为电极的电池的峰值输出功率密度分别达到400和230mW/cm~2.这些结果表明,通过Ni掺杂和原位焙烧,在LSFN电极颗粒表面制备了均匀分布的Ni-Fe合金纳米颗粒,极大地提高了铁酸锶镧材料对碳基燃料的催化活性.长期放电测试结果表明,LSF为电极的单电池在测试过程中,尾气可以收集到类似焦油状的黑色物质;而LSNF为电极的单电池在测试过程中并没有观察到明显的焦油状物质生成.通过气相色谱-质谱联用分析,发现所产生的焦油状物质主要成分是含苯环、碳碳双建或碳碳三键的烃类.这说明LSF电极只能使C_3H_8部分氧化,LSFN对C_3H_8等碳氢化合物燃料的氧化具有高的催化活性和良好的耐久性.Ni掺杂的La_(0.6)Sr_(0.4)FeO_(3-δ)阳极材料是一种有希望的碳基燃料SOFCs对称电极.  相似文献   

19.
薄膜型中温固体氧化物燃料电池 (SOFC)研制及性能考察   总被引:12,自引:0,他引:12  
用一种廉价的湿化学方法 ,在Ni_YSZ阳极基膜上制备出致密的YttriaStabilizedZirconia(YSZ)薄膜 .薄膜的厚度约为 10 μm ,致密均匀 ,无裂纹等缺陷 .以Ni_YSZ阳极基膜 ,YSZ薄膜和锶掺杂锰酸镧阴极 (LSM )组装的SOFC单电池 ,在 80 0℃下功率密度达 0 1W /cm2 .研究分析表明 ,YSZ薄膜的IR降 (包括电极 /YSZ薄膜的接触电阻 )较小 ,不是影响电池性能的主要因素 ,大的阳极过电位是影响电池性能的主要因素 .  相似文献   

20.
Ni-YSZ(钇稳定氧化锆)金属陶瓷普遍被用作固体氧化物燃料电池(SOFC)的阳极材料,其氧化物浆料的性质对湿法制备的SOFC的性能具有重要影响. 通过zeta 电位分析,研究了NiO-YSZ双分散相水系浆料的稳定性. 对六种分散剂作用于NiO、YSZ 表面的zeta 电位进行研究,发现采用的阴离子分散剂和两性分散剂使NiO 和YSZ在水中带有相反电荷而引起迅速絮凝; 采用阳离子分散剂聚二烯二甲基氯化铵(PDAC)时,NiO 和YSZ因带有正电荷相互排斥而稳定分散于水中,在此基础上,加入作为SOFC阳极造孔剂的石墨,采用聚乙烯吡咯烷酮(PVP)作为石墨的分散剂,制备出了NiO-YSZ-石墨的稳定水系浆料. 采用此浆料通过注浆成型制得阳极支撑管,进而组装成SOFC单电池. 该单电池在800℃时最大功率密度达到509 mW·cm-2; 扫描电镜(SEM)分析表明电极与电解质间接触良好,阳极孔洞分布均匀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号