首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
应用双层流延法制备Ni-ScSZ阳极支撑体-ScSZ电解质复合膜素坯,经共烧结得到复合膜.以硝酸铈和硝酸钆为原料,柠檬酸作燃料,由燃烧合成法制备Gd0.2Ce0.8O2(GDC)包覆的Ni-ScSZ阳极.X-射线衍射(XRD)和电子显微镜(TEM和SEM)分析显示,Ni-ScSZ阳极颗粒表面的包覆层是由直径小于100 nm的GDC微粒构成,并与Ni-ScSZ阳极颗粒紧密烧结在一起.实验表明,2.0%(by mass)GDC包覆的Ni-ScSZ阳极具有较佳的性能,以其组装的单电池在850℃用H2或CH4作燃料的最大功率密度分别是825和848 mW/cm2,而由无包覆的Ni-ScSZ作阳极的单电池,功率密度分别是584和586 mW/cm2.由两种阳极材料组装的单电池,分别在700℃于CH4气氛下作长时间发电实验,发现2.0%(by mass)GDC包覆的Ni-ScSZ阳极比Ni-ScSZ阳极具有较好的抗碳沉积性能.  相似文献   

2.
采用共压-共烧结的方法制备以NiO-La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O2-δ复合阳极为支撑,以Ce0.8Gd0.2O2-δ(GDC)为电解质,以La0.8Sr0.2Co0.8Fe0.2O3-δ (LSCF)-Ce0.8Gd0.2O2-δ(GDC)为复合阴极的单电池,在 400~650 ℃范围内,以干甲烷为燃料气,氧气为氧化气,测试了单电池的性能.用SEM对单电池进行微观结构分析,并对电池在650 ℃进行了6 h的稳定性测试,结果表明,该电池在6 h的测试过程中功率有较大的衰减,单电池在650 ℃时得到电流密度和功率流密度分别为为258.26 mA/cm2,为51.31 mW/cm2.  相似文献   

3.
研究了Y2O3稳定的ZrO2(YSZ)氧离子传导膜H2S固体氧化物燃料电池性能。掺杂NiS、电解质、Ag粉和淀粉制备了双金属复合MoS2阳极催化剂,掺杂电解质、Ag粉和淀粉制备了复合NiO阴极催化剂,用扫描电镜对YSZ和膜电极组装(MEA)进行了表征,比较了不同电极催化剂的性能和极化过程,考察了不同温度对电池性能的影响。结果表明,双金属复合MoS2/NiS阳极催化剂在H2S环境下比Pt和单金属MoS2催化剂稳定,复合NiO阴极催化剂比Pt性能好,在电极催化剂中加入Ag可显著提高电极的导电性;与Pt电极相比,复合MoS2阳极和复合NiO阴极催化剂的过电位较小,阳极的极化比阴极侧小;温度升高,电池的电流密度与功率密度增加,电化学性能变好。在750℃、800℃、850℃和900℃及101.13 kPa时,结构为H2S、(复合MoS2阳极催化剂)/YSZ氧离子传导膜/(复合NiO阴极催化剂)、空气的燃料电池最大功率密度分别为30 mW/cm2、70 mW/cm2、155 mW/cm2及295 mW/cm2、最大电流密度分别为120 mA/cm2、240 mA/cm2、560 mA/cm2和890 mA/cm2。  相似文献   

4.
采用共压直接成型法制备单腔体固体氧化物燃料电池(SC-SOFC),单电池结构为Ni-YSZ/YSZ/LSM,YSZ为8%(x)Y2O3稳定的ZrO2,LSM为锰酸镧锶(La0.7Sr0.3MnO3).应用扫描电子显微镜(SEM)研究了电池微观结构,结果表明:阴极和电解质之间结合紧密,LSM在阴极YSZ三维骨架上负载性能良好;YSZ电解质薄膜厚约50μm,阳极厚约600μm,阴极层厚约100μm.研究了单电池反应温度T,阴极催化剂负载层数n,甲烷和氧气混合体积比Rmix对电池输出性能的影响规律.在T=800℃、n=2、Rmix=2时,电池性能达到最佳,开路电压为0.95V,最大电流密度为130mA·cm-2,最大功率密度为30mW·cm-2.  相似文献   

5.
采用溶胶凝胶法制备了La0.7Sr0.3Cr1-xMnxO3-δ(x=0.3,0.4,0.5,0.6)系列阳极粉体。在1000℃下焙烧后,XRD结果显示粉体物相为单一的钙钛矿相。制备以La0.7Sr0.3Cr1-xMnxO3-δ为阳极,Ce0.8Sm0.2O1.9(SDC)为电解质,Pr0.6Sr0.4Co0.8Fe0.2O3-δ-SDC复合阴极的电解质支撑型固体氧化物燃料单电池。由扫描电子显微镜(SEM)观察表明单电池电解质致密,阳极孔径分布均匀,厚度约为20μm,多孔阴极厚度为10μm。采用直流四电极法测试以La0.7Sr0.3Cr0.5Mn0.5O3-δ为阳极用湿氢气作燃料时在800℃下获得最大输出功率为232.84 mW.cm-2,短路电流为0.92 A.cm-2。  相似文献   

6.
采用硝酸盐-甘氨酸溶液燃烧法合成了La0.6Sr0.4Co0.2Fe0.8O3-?啄(LSCF)前驱粉体, 通过XRD、BET、FESEM及激光粒度仪等手段对粉体进行表征. 结果表明, 所合成的LSCF粉体为纯钙钛矿结构, 具有高达22.9 m2·g-1的比表面积, 粒度均匀, 平均颗粒尺寸为175 nm. 非等温烧结实验表明该粉体具有良好的低温烧结活性. 在阳极NiO-YSZ(氧化钇稳定氧化锆)负载的电解质YSZ上, 于800 ℃烧结制备LSCF阴极组成的单元电池Ni-YSZ/YSZ/LSCF, 在700 ℃下以H2作燃料时具有良好的电池性能, 最大功率密度为0.97 W·cm-2, 在0.7 V时的功率密度约达到0.83 W·cm-2. 这种无中间缓冲层的低温制备LSCF阴极方法, 简化了电池结构及其制备过程, 同时提高了电池的性能.  相似文献   

7.
Cu-CeO_2基阳极直接甲烷SOFC的制备及其性能   总被引:1,自引:0,他引:1  
采用干压法制备了NiO-YSZ(氧化钇稳定氧化锆)/(ZrO2)0.89(Sc2O3)0.1(CeO2)0.01(10ScSZ-1CeO2)半电池,经还原-酸溶法除去NiO制备了多孔YSZ负载致密10ScSZ-1CeO2双层结构,通过浸渍法在多孔YSZ阳极基体中引入Ce、Cu的硝酸盐制备Cu-CeO2-YSZ复合阳极,结合La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极构建了Cu-CeO2-YSZ/10ScSZ-1CeO2/LSCF单元电池.通过X射线衍射(XRD)和场发射扫描电镜(FESEM)等手段对电池单元的物相、微观结构进行表征.结果表明:还原-酸溶法制备的YSZ/10ScSZ-1CeO2双层结构的YSZ基体具有孔隙率高(64%)、孔洞连通性好的微观结构,有助于采用浸渍法引入Ce、Cu硝酸盐;10ScSZ-1CeO2电解质薄膜致密无缺陷,厚约30μm.电性能测试表明所构建单元固体氧化物燃料电池(SOFC)具有良好的电性能输出,在650℃以湿H2和CH4为燃料时的最大功率密度分别为0.29和0.09W·cm-2;在700℃以湿H2和CH4为燃料时的最大功率密度分别达到0.48和0.21W·cm-2.优良的电性能主要归功于小的电解质内阻和阴极极化电阻以及良好的阳极微观结构.  相似文献   

8.
纳米TiO2修饰的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极被直接应用于YSZ电解质电池上. TiO2可阻止LSCF和YSZ间的化学反应,抑制SrZrO3的形成. LSCF-0.25 wt% TiO2阴极电池在0.7 V和600°C下的电流密度是LSCF阴极电池的1.6倍.电化学阻抗谱结果表明, TiO2修饰显著加快了氧离子注入电解质的过程,这可能与TiO2抑制了阴极/电解质界面处高电阻SrZrO3层的形成有关.本文为在ZrO2基电解质上使用高性能的(La,Sr)(Co,Fe)O3阴极材料提供了一种简单有效的方法.  相似文献   

9.
采用干压法制备了NiO-YSZ(氧化钇稳定氧化锆)/(ZrO2)0.89(Sc2O3)0.1(CeO2)0.01(10ScSZ-1CeO2)半电池, 经还原-酸溶法除去NiO制备了多孔YSZ负载致密10ScSZ-1CeO2双层结构, 通过浸渍法在多孔YSZ阳极基体中引入Ce、Cu的硝酸盐制备Cu-CeO2-YSZ复合阳极, 结合La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极构建了Cu-CeO2-YSZ/10ScSZ-1CeO2/LSCF单元电池. 通过X射线衍射(XRD)和场发射扫描电镜(FESEM)等手段对电池单元的物相、微观结构进行表征. 结果表明: 还原-酸溶法制备的YSZ/10ScSZ-1CeO2双层结构的YSZ基体具有孔隙率高(>64%)、孔洞连通性好的微观结构, 有助于采用浸渍法引入Ce、Cu硝酸盐; 10ScSZ-1CeO2电解质薄膜致密无缺陷, 厚约30 μm. 电性能测试表明所构建单元固体氧化物燃料电池(SOFC)具有良好的电性能输出, 在650 ℃以湿H2和CH4为燃料时的最大功率密度分别为0.29和0.09 W·cm-2; 在700 ℃以湿H2和CH4为燃料时的最大功率密度分别达到0.48 和0.21 W·cm-2. 优良的电性能主要归功于小的电解质内阻和阴极极化电阻以及良好的阳极微观结构.  相似文献   

10.
纳米TiO2修饰的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极被直接应用于YSZ电解质电池上. TiO2可阻止LSCF和YSZ间的化学反应,抑制SrZrO3的形成. LSCF-0.25 wt% TiO2阴极电池在0.7 V和600°C下的电流密度是LSCF阴极电池的1.6倍.电化学阻抗谱结果表明, TiO2修饰显著加快了氧离子注入电解质的过程,这可能与TiO2抑制了阴极/电解质界面处高电阻SrZrO3层的形成有关.本文为在ZrO2基电解质上使用高性能的(La,Sr)(Co,Fe)O3阴极材料提供了一种简单有效的方法.  相似文献   

11.
王新平  赵沁  蔡天锡 《化学学报》2002,60(5):815-819
研究了在O_2存在条件下,NO在Pd |YSZ| Pd固体电解质电池和RuO_2 |Pd|YSZ| Pd固体电解质电池上的分解性质,在O_2存在条件下650 ~ 700 ℃之间 ,在0 ~ 4.4 V直流电压作用下,NO在Pd |YSZ| Pd电池和RuO_2|Pd|YSZ| Pd电池 上的分解不以电解机制进行,而以电催化机理进行的。即在直流电压下,阴极催化 剂上的O~(2-)被直流电压通过YSZ固体电解质转移到阳极,以O_2的形式放出,以此 保持催化剂的活性状态。在Pd|YSZ|Pd 固体电解质电池上,Pd金属表面是催化NO分 解的主要活性位。RuO_2 |Pd|YSZ| Pd固体电解质电池上,某特定还原态的RuO_x (0 < x < 2)是NO分解的主要活性位。在O_2存在下,该电池在1 ~ 4 V间合适的电 压下,在650 ~ 700 ℃能选择性地对NO进行电催化分解。  相似文献   

12.
薄膜型中温固体氧化物燃料电池 (SOFC)研制及性能考察   总被引:12,自引:0,他引:12  
用一种廉价的湿化学方法 ,在Ni_YSZ阳极基膜上制备出致密的YttriaStabilizedZirconia(YSZ)薄膜 .薄膜的厚度约为 10 μm ,致密均匀 ,无裂纹等缺陷 .以Ni_YSZ阳极基膜 ,YSZ薄膜和锶掺杂锰酸镧阴极 (LSM )组装的SOFC单电池 ,在 80 0℃下功率密度达 0 1W /cm2 .研究分析表明 ,YSZ薄膜的IR降 (包括电极 /YSZ薄膜的接触电阻 )较小 ,不是影响电池性能的主要因素 ,大的阳极过电位是影响电池性能的主要因素 .  相似文献   

13.
Physico-chemical and structural properties of nanocomposite NiO/ZrO2:Y2O3 (NiO/YSZ) films applied using the reactive magnetron deposition technique are studied for application as anodes of solid oxide fuel cells. The effect of oxygen consumption and magnetron power on the discharge parameters is determined to find the optimum conditions of reactive deposition. The conditions for deposition of NiO/YSZ films, under which the deposition rate is maximum (12 μm/h), are found and the volume content of Ni is within the range of 40–50%. Ni-YSZ films reduced in a hydrogen atmosphere at the temperature of 800°C have a nanoporous structure. However, massive nickel agglomerates are formed in the course of reduction on the film surface; their amount grows at an increase in Ni content in the film. Solid oxide fuel cells with YSZ supporting electrolyte and a LaSrMnO3 cathode are manufactured to study electrochemical properties of NiO/YSZ films. It is shown that fuel cells with a nanocomposite NiO/YSZ anode applied using a magnetron sputtering technique have the maximum power density twice higher than in the case of fuel cells with an anode formed using the high-temperature sintering technique owing to a more developed gas-anode-electrolyte three-phase boundary.  相似文献   

14.
郝红霞  刘瑞泉 《无机化学学报》2009,25(10):1842-1847
采用溶胶-凝胶法合成了新型中温固体氧化物燃料电池(IT-SOFC)阳极材料Ce1-xErxOy(x=0.00,0.10,0.15,0.20,0.25,0.30)(EDC),并采用共压-共烧结法制备了以NiO-EDC复合阳极为支撑、以Ce0.8Gd0.2O2-δ(GDC)为电解质、以La0.8Sr0.2Co0.8Fe0.2O3-δ(LSCF)-GDC为复合阴极的单电池。利用XRD和SEM等方法对阳极材料EDC进行了晶相结构、微观形貌和化学相容性等分析。在400~700 ℃范围内,以加湿天然气(3% H2O)为燃料气,氧气为氧化气测试了电池的电化学性能。结果表明:EDC阳极材料具有良好的孔道结构;11种不同阳极组成的单电池中50%(质量分数)NiO-50%(质量分数)Ce0.85Er0.15Oy(E15C85)阳极支撑的单电池具有最佳的电化学性能,在650 ℃时其最大电流密度为117.84 mA·cm-2和最大比功率为24.37 mW·cm-2。  相似文献   

15.
A rechargeable battery using novel α-Fe(2)O(3)/CNFs composite as the anode, β-Ni(OH)(2) as the cathode and LiOH/KOH solution as the electrolyte in an aqueous rechargeable battery has been proposed. The Fe(2)O(3)/Ni(OH)(2) prototype cell exhibits a high average operational voltage of 1.5 V, high rate capability and good cycling performance.  相似文献   

16.
The decrease in the polarization resistance of the anode of solid-oxide fuel cells (SOFCs) due to the formation of an additional NiO/(ZrO2 + 10 mol % Y2O3) (YSZ) functional layer was studied. NiO/YSZ films with different NiO contents were deposited by reactive magnetron sputtering of Ni and Zr–Y targets. The elemental and phase composition of the films was adjusted by regulating oxygen flow rate during the sputtering. The resulting films were studied by scanning electron microscopy and X-ray diffractometry. Comparative tests of planar SOFCs with a NiO/YSZ anode support, NiO/YSZ functional nanostructured anode layer, YSZ electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were performed. It was shown that the formation of a NiO/YSZ functional nanostructured anode leads to a 15–25% increase in the maximum power density of fuel cells in the working temperature range 500–800°C. The NiO/YSZ nanostructured anode layers lead not only to a reduction of the polarization resistance of the anode, but also to the formation of denser electrolyte films during subsequent magnetron sputtering of electrolyte.  相似文献   

17.
本文采用球形Al/Co部分取代α型Ni(OH)2为前驱体成功制备了锂离子电池正极材料LiNi0.8Co0.15Al0.05O2。首先采用氢氧化钠与碳酸钠为沉淀剂合成出Al/Co部分取代α型Ni(OH)2,然后将之与LiOH·H2O混合,最后在氧气气氛中不同温度下热处理8h,即可得到球形LiNi0.8Co0.15Al0.05O2材料。X射线衍射结果表明,LiNi0.8Co0.15Al0.05O2材料为α-NaFeO2相。扫描电镜结果表明,材料颗粒形貌为球形。热重分析结果表明合成LiNi0.8Co0.15Al0.05O2的主反应温度在700~750℃之间。振实密度测试结果表明,750℃下制备的LiNi0.8Co0.15Al0.05O2材料可达2.2g·cm-3。恒流充放电结果表明,该材料在0.5mA·cm-2电流密度下,在3.0~4.3V间的首次充电容量可达210.3mAh·g-1,首次放电容量为179.7mAh·g-1,充放电效率为85.4%。与采用以β-Ni0.85Co0.15(OH)2为前驱体合成的LiNi0.85Co0.15O2和Al掺杂的LiNi0.8Co0.15Al0.05O2相比,尽管其首次放电容量与放电效率都有所降低,但循环性能有所提高,50周期后容量仍为初始容量的89.5%。研究表明,以球形Al/Co部分取代α型Ni(OH)2作为前驱体为球形氧化镍钴铝锂材料的制备提供了一条新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号